组合nullstellensz在整幻图标记中的应用

Q4 Mathematics
R. Low, D. Roberts
{"title":"组合nullstellensz在整幻图标记中的应用","authors":"R. Low, D. Roberts","doi":"10.20429/tag.2022.090103","DOIUrl":null,"url":null,"abstract":"Let A be a nontrivial additive abelian group and A∗ = A\\{0}. A graph is A-magic if there exists an edge labeling f using elements of A∗ which induces a constant vertex labeling of the graph. Here, the induced label on a vertex is obtained by calculating the sum of the edge labels adjacent to that vertex. Such a labeling f is called an A-magic labeling and the constant value of the induced vertex labeling is called an A-magic value. In this paper, we use the Combinatorial Nullstellensatz to show the existence of Zp-magic labelings (prime p ≥ 3 ) for various graphs, without having to construct the Zp-magic labelings. Through many examples, we illustrate the usefulness and limitations in applying the Combinatorial Nullstellensatz to the integer-magic labeling problem. Finally, we focus on Z3-magic labelings and give some results for various classes of graphs.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of the Combinatorial Nullstellensatz to Integer-magic Graph Labelings\",\"authors\":\"R. Low, D. Roberts\",\"doi\":\"10.20429/tag.2022.090103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A be a nontrivial additive abelian group and A∗ = A\\\\{0}. A graph is A-magic if there exists an edge labeling f using elements of A∗ which induces a constant vertex labeling of the graph. Here, the induced label on a vertex is obtained by calculating the sum of the edge labels adjacent to that vertex. Such a labeling f is called an A-magic labeling and the constant value of the induced vertex labeling is called an A-magic value. In this paper, we use the Combinatorial Nullstellensatz to show the existence of Zp-magic labelings (prime p ≥ 3 ) for various graphs, without having to construct the Zp-magic labelings. Through many examples, we illustrate the usefulness and limitations in applying the Combinatorial Nullstellensatz to the integer-magic labeling problem. Finally, we focus on Z3-magic labelings and give some results for various classes of graphs.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2022.090103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2022.090103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

设A是一个非平凡加性阿贝尔群,且A * = A\{0}。一个图是A-幻的,如果存在一个边标记f,使用A *的元素,它可以引出图的一个常数顶点标记。在这里,顶点上的诱导标记是通过计算与该顶点相邻的边标记的总和来获得的。这样的标记f称为a -magic标记,而诱导顶点标记的常数值称为a -magic值。在本文中,我们使用组合Nullstellensatz证明了各种图的Zp-magic标记(素数p≥3)的存在性,而不需要构造Zp-magic标记。通过许多例子,我们说明了将组合nullstellensz应用于整数幻标问题的有用性和局限性。最后,我们重点讨论了Z3-magic标记,并给出了各种图类的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Combinatorial Nullstellensatz to Integer-magic Graph Labelings
Let A be a nontrivial additive abelian group and A∗ = A\{0}. A graph is A-magic if there exists an edge labeling f using elements of A∗ which induces a constant vertex labeling of the graph. Here, the induced label on a vertex is obtained by calculating the sum of the edge labels adjacent to that vertex. Such a labeling f is called an A-magic labeling and the constant value of the induced vertex labeling is called an A-magic value. In this paper, we use the Combinatorial Nullstellensatz to show the existence of Zp-magic labelings (prime p ≥ 3 ) for various graphs, without having to construct the Zp-magic labelings. Through many examples, we illustrate the usefulness and limitations in applying the Combinatorial Nullstellensatz to the integer-magic labeling problem. Finally, we focus on Z3-magic labelings and give some results for various classes of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信