利用遥感影像绘制野火效果的光谱分析。

IF 1.3 Q3 REMOTE SENSING
Dale A. Hamilton, M. Bowerman, J. Colwell, Greg Donohoe, B. Myers
{"title":"利用遥感影像绘制野火效果的光谱分析。","authors":"Dale A. Hamilton, M. Bowerman, J. Colwell, Greg Donohoe, B. Myers","doi":"10.1139/JUVS-2016-0019","DOIUrl":null,"url":null,"abstract":"1.5 to 4 million hectares of land burns in wildfire across the United States each year, contributing to post-fire erosion, ecosystem degradation and loss of wildlife habitat. Unmanned Aircraft Systems (UAS) and sensor miniaturization offer a new paradigm, providing an affordable, safe, and responsive on-demand tool for monitoring fire effects at a much finer spatial resolution than is possible with current technology. Using spectroscopic analysis of a variety of live as well as combusted vegetation samples to identify the spectral separability of vegetation classes, an optimal set of spectra was selected to be utilized by machine learning classifiers. This approach allows high resolution mapping of wildland fire severity and extent.","PeriodicalId":45619,"journal":{"name":"Journal of Unmanned Vehicle Systems","volume":"5 4 1","pages":"146-158"},"PeriodicalIF":1.3000,"publicationDate":"2017-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/JUVS-2016-0019","citationCount":"10","resultStr":"{\"title\":\"Spectroscopic Analysis for Mapping Wildland Fire Effects from Remotely Sensed Imagery.\",\"authors\":\"Dale A. Hamilton, M. Bowerman, J. Colwell, Greg Donohoe, B. Myers\",\"doi\":\"10.1139/JUVS-2016-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1.5 to 4 million hectares of land burns in wildfire across the United States each year, contributing to post-fire erosion, ecosystem degradation and loss of wildlife habitat. Unmanned Aircraft Systems (UAS) and sensor miniaturization offer a new paradigm, providing an affordable, safe, and responsive on-demand tool for monitoring fire effects at a much finer spatial resolution than is possible with current technology. Using spectroscopic analysis of a variety of live as well as combusted vegetation samples to identify the spectral separability of vegetation classes, an optimal set of spectra was selected to be utilized by machine learning classifiers. This approach allows high resolution mapping of wildland fire severity and extent.\",\"PeriodicalId\":45619,\"journal\":{\"name\":\"Journal of Unmanned Vehicle Systems\",\"volume\":\"5 4 1\",\"pages\":\"146-158\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/JUVS-2016-0019\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unmanned Vehicle Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/JUVS-2016-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unmanned Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/JUVS-2016-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 10

摘要

美国每年有150万至400万公顷的土地在野火中燃烧,导致火灾后的侵蚀、生态系统退化和野生动物栖息地的丧失。无人机系统(UAS)和传感器小型化提供了一种新的模式,提供了一个负担得起、安全且响应迅速的按需工具,用于以比当前技术更精细的空间分辨率监测火灾影响。使用对各种活的和燃烧的植被样本的光谱分析来识别植被类别的光谱可分性,选择了一组最佳光谱供机器学习分类器使用。这种方法可以对荒地火灾的严重程度和程度进行高分辨率的测绘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectroscopic Analysis for Mapping Wildland Fire Effects from Remotely Sensed Imagery.
1.5 to 4 million hectares of land burns in wildfire across the United States each year, contributing to post-fire erosion, ecosystem degradation and loss of wildlife habitat. Unmanned Aircraft Systems (UAS) and sensor miniaturization offer a new paradigm, providing an affordable, safe, and responsive on-demand tool for monitoring fire effects at a much finer spatial resolution than is possible with current technology. Using spectroscopic analysis of a variety of live as well as combusted vegetation samples to identify the spectral separability of vegetation classes, an optimal set of spectra was selected to be utilized by machine learning classifiers. This approach allows high resolution mapping of wildland fire severity and extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信