Minsung Cho, Seth Hoisington, Roger Nichols, Brian Udall
{"title":"正则偶阶拟微分算子的Krein-von Neumann扩展","authors":"Minsung Cho, Seth Hoisington, Roger Nichols, Brian Udall","doi":"10.7494/opmath.2021.41.6.805","DOIUrl":null,"url":null,"abstract":"We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Krein-von Neumann extension of a regular even order quasi-differential operator\",\"authors\":\"Minsung Cho, Seth Hoisington, Roger Nichols, Brian Udall\",\"doi\":\"10.7494/opmath.2021.41.6.805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2021.41.6.805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2021.41.6.805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Krein-von Neumann extension of a regular even order quasi-differential operator
We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.