Pub Date : 2023-02-16 DOI:10.1002/cjs.11765
Hengtao Zhang, Guosheng Yin, Donald B. Rubin
{"title":"PCA Rerandomization","authors":"Hengtao Zhang,&nbsp;Guosheng Yin,&nbsp;Donald B. Rubin","doi":"10.1002/cjs.11765","DOIUrl":null,"url":null,"abstract":"<p>Mahalanobis distance of covariate means between treatment and control groups is often adopted as a balance criterion when implementing a rerandomization strategy. However, this criterion may not work well for high-dimensional cases because it balances all orthogonalized covariates equally. We propose using principal component analysis (PCA) to identify proper subspaces in which Mahalanobis distance should be calculated. Not only can PCA effectively reduce the dimensionality for high-dimensional covariates, but it also provides computational simplicity by focusing on the top orthogonal components. The PCA rerandomization scheme has desirable theoretical properties for balancing covariates and thereby improving the estimation of average treatment effects. This conclusion is supported by numerical studies using both simulated and real examples.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11765","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在实施再随机化策略时,治疗组和对照组之间的马氏距离协变均值通常被用作平衡标准。然而,这个标准可能不适用于高维情况,因为它平等地平衡了所有正交协变量。在这里,我们建议利用主成分分析(PCA)来确定应该在其中计算Mahalanobis距离的适当子空间。PCA不仅可以有效地降低高维情况的维数,同时捕获协变量中的大部分信息,而且它还通过关注顶部正交分量来提供计算简单性。我们证明了我们的PCA重随机化方案在平衡协变量方面具有理想的理论性质,从而改进了平均治疗效果的估计。我们还表明,这一结论得到了数值研究的支持,包括模拟和实际例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PCA Rerandomization

分享
查看原文
PCA Rerandomization

Mahalanobis distance of covariate means between treatment and control groups is often adopted as a balance criterion when implementing a rerandomization strategy. However, this criterion may not work well for high-dimensional cases because it balances all orthogonalized covariates equally. We propose using principal component analysis (PCA) to identify proper subspaces in which Mahalanobis distance should be calculated. Not only can PCA effectively reduce the dimensionality for high-dimensional covariates, but it also provides computational simplicity by focusing on the top orthogonal components. The PCA rerandomization scheme has desirable theoretical properties for balancing covariates and thereby improving the estimation of average treatment effects. This conclusion is supported by numerical studies using both simulated and real examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信