NiCr2O4中Ni2+的磁、电偶极矩的来源

IF 1.9 Q3 PHYSICS, CONDENSED MATTER
M. Eremin, K. Vasin
{"title":"NiCr2O4中Ni2+的磁、电偶极矩的来源","authors":"M. Eremin, K. Vasin","doi":"10.3390/condmat8010023","DOIUrl":null,"url":null,"abstract":"The energy level schema of the ground term of the nickel ion in NiCr2O4 was calculated. The parameters of the interaction with the electric field were determined, and the distribution pattern of the electric dipole moments over different positions of nickel in the unit cell was calculated. The model of the NiCr2O4 magnetoelectric structure at T < Tc was constructed taking into account the data on neutron scattering and the results of the electric polarization measurements. The origin of the magnetodielectric effect was attributed to the peculiarities of the ground state of the nickel ion.","PeriodicalId":10665,"journal":{"name":"Condensed Matter","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Origin of the Magnetic and Electric Dipole Moments of Ni2+ in NiCr2O4\",\"authors\":\"M. Eremin, K. Vasin\",\"doi\":\"10.3390/condmat8010023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy level schema of the ground term of the nickel ion in NiCr2O4 was calculated. The parameters of the interaction with the electric field were determined, and the distribution pattern of the electric dipole moments over different positions of nickel in the unit cell was calculated. The model of the NiCr2O4 magnetoelectric structure at T < Tc was constructed taking into account the data on neutron scattering and the results of the electric polarization measurements. The origin of the magnetodielectric effect was attributed to the peculiarities of the ground state of the nickel ion.\",\"PeriodicalId\":10665,\"journal\":{\"name\":\"Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/condmat8010023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat8010023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

计算了NiCr2O4中镍离子基项的能级谱图。确定了与电场相互作用的参数,计算了镍在单元电池中不同位置上的电偶极矩分布规律。结合中子散射数据和电极化测量结果,建立了T < Tc点NiCr2O4磁电结构模型。磁介电效应的起源归因于镍离子基态的特殊性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Origin of the Magnetic and Electric Dipole Moments of Ni2+ in NiCr2O4
The energy level schema of the ground term of the nickel ion in NiCr2O4 was calculated. The parameters of the interaction with the electric field were determined, and the distribution pattern of the electric dipole moments over different positions of nickel in the unit cell was calculated. The model of the NiCr2O4 magnetoelectric structure at T < Tc was constructed taking into account the data on neutron scattering and the results of the electric polarization measurements. The origin of the magnetodielectric effect was attributed to the peculiarities of the ground state of the nickel ion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter
Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
2.90
自引率
11.80%
发文量
58
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信