稳态扩散,扩散系数与浓度呈光滑阶跃关系

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2023-01-10 DOI:10.1007/s12043-022-02498-6
S E Savotchenko, A N Cherniakov
{"title":"稳态扩散,扩散系数与浓度呈光滑阶跃关系","authors":"S E Savotchenko,&nbsp;A N Cherniakov","doi":"10.1007/s12043-022-02498-6","DOIUrl":null,"url":null,"abstract":"<div><p>The steady-state diffusion processes are investigated theoretically. Exact solutions of one-dimensional steady-state quasi-linear diffusion equation with smooth step dependence of the diffusion coefficient on concentration in various smooth step functions (linear step, exponential step, logistic, power saturation step) are obtained. The proposed theory is applied to describe peculiarities of diffusion-activated recrystallisation at steady-state stage at long times of diffusion annealing. The diffusant concentration monotonically decreases with an increasing depth of diffusant penetration. The smallest penetration depth of the diffusant is the characteristic of the logistic model. The analytical estimations of the diffusion coefficient with known recrystallisation front position are given. The position of recrystallisation front decreases monotonically with an increase in the model parameter, which corresponds to the smoothness of the step and the rate of change of the diffusion coefficient.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12043-022-02498-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Steady-state diffusion with the smooth step dependence of the diffusion coefficient on concentration\",\"authors\":\"S E Savotchenko,&nbsp;A N Cherniakov\",\"doi\":\"10.1007/s12043-022-02498-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The steady-state diffusion processes are investigated theoretically. Exact solutions of one-dimensional steady-state quasi-linear diffusion equation with smooth step dependence of the diffusion coefficient on concentration in various smooth step functions (linear step, exponential step, logistic, power saturation step) are obtained. The proposed theory is applied to describe peculiarities of diffusion-activated recrystallisation at steady-state stage at long times of diffusion annealing. The diffusant concentration monotonically decreases with an increasing depth of diffusant penetration. The smallest penetration depth of the diffusant is the characteristic of the logistic model. The analytical estimations of the diffusion coefficient with known recrystallisation front position are given. The position of recrystallisation front decreases monotonically with an increase in the model parameter, which corresponds to the smoothness of the step and the rate of change of the diffusion coefficient.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12043-022-02498-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-022-02498-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-022-02498-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从理论上研究了稳态扩散过程。得到了扩散系数随浓度的光滑阶跃函数(线性阶跃、指数阶跃、logistic阶跃、功率饱和阶跃)的一维稳态准线性扩散方程的精确解。该理论用于描述长时间扩散退火过程中稳态阶段扩散激活再结晶的特性。扩散剂浓度随扩散剂渗透深度的增加而单调降低。扩散剂的最小渗透深度是logistic模型的特征。给出了已知再结晶前沿位置下扩散系数的解析估计。再结晶锋的位置随着模型参数的增大而单调减小,这与阶梯的平滑性和扩散系数的变化率相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Steady-state diffusion with the smooth step dependence of the diffusion coefficient on concentration

Steady-state diffusion with the smooth step dependence of the diffusion coefficient on concentration

The steady-state diffusion processes are investigated theoretically. Exact solutions of one-dimensional steady-state quasi-linear diffusion equation with smooth step dependence of the diffusion coefficient on concentration in various smooth step functions (linear step, exponential step, logistic, power saturation step) are obtained. The proposed theory is applied to describe peculiarities of diffusion-activated recrystallisation at steady-state stage at long times of diffusion annealing. The diffusant concentration monotonically decreases with an increasing depth of diffusant penetration. The smallest penetration depth of the diffusant is the characteristic of the logistic model. The analytical estimations of the diffusion coefficient with known recrystallisation front position are given. The position of recrystallisation front decreases monotonically with an increase in the model parameter, which corresponds to the smoothness of the step and the rate of change of the diffusion coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信