方形白噪声李代数的q-变形

IF 0.3 Q4 MATHEMATICS
Sami H. Altoum
{"title":"方形白噪声李代数的q-变形","authors":"Sami H. Altoum","doi":"10.1016/j.trmi.2018.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, the <span><math><mi>q</mi></math></span>-deformation of the square white noise Lie algebra is introduced using the <span><math><mi>q</mi></math></span>-calculus. A representation of this Lie algebra is given, using the <span><math><mi>q</mi></math></span>-derivative (or Jackson derivative) and the multiplication operator. The free square white noise Lie algebra is defined. Moreover, its representation on the Hardy space is given.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 2","pages":"Pages 133-139"},"PeriodicalIF":0.3000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.01.005","citationCount":"3","resultStr":"{\"title\":\"q-deformation of the square white noise Lie algebra\",\"authors\":\"Sami H. Altoum\",\"doi\":\"10.1016/j.trmi.2018.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span><math><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, the <span><math><mi>q</mi></math></span>-deformation of the square white noise Lie algebra is introduced using the <span><math><mi>q</mi></math></span>-calculus. A representation of this Lie algebra is given, using the <span><math><mi>q</mi></math></span>-derivative (or Jackson derivative) and the multiplication operator. The free square white noise Lie algebra is defined. Moreover, its representation on the Hardy space is given.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 2\",\"pages\":\"Pages 133-139\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.01.005\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217301526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

对于q∈(0,1),利用q演算引入方形白噪声李代数的q-变形。利用q导数(或Jackson导数)和乘法算子给出了这个李代数的表示。定义了自由平方白噪声李代数。并给出了其在Hardy空间上的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-deformation of the square white noise Lie algebra

For q(0,1), the q-deformation of the square white noise Lie algebra is introduced using the q-calculus. A representation of this Lie algebra is given, using the q-derivative (or Jackson derivative) and the multiplication operator. The free square white noise Lie algebra is defined. Moreover, its representation on the Hardy space is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信