使用混合导数的聚合物溶液本构建模中的非仿射运动和滑移系数选择

IF 3 2区 工程技术 Q2 MECHANICS
D. Nieto Simavilla, P. Español, M. Ellero
{"title":"使用混合导数的聚合物溶液本构建模中的非仿射运动和滑移系数选择","authors":"D. Nieto Simavilla, P. Español, M. Ellero","doi":"10.1122/8.0000527","DOIUrl":null,"url":null,"abstract":"Constitutive models for the dynamics of polymer solutions traditionally rely on closure relations for the extra stress or related microstructural variables (e.g., conformation tensor) linking them to flow history. In this work, we study the eigendynamics of the conformation tensor within the GENERIC framework in mesoscopic computer simulations of polymer solutions to separate the effects of nonaffine motion from other sources of non-Newtonian behavior. We observe that nonaffine motion or slip increases with both the polymer concentration and the polymer chain length. Our analysis allows to uniquely calibrate a mixed derivative of the Gordon–Schowalter type in macroscopic models based on a micro-macromapping of the dynamics of the polymeric system. The presented approach paves the way for better polymer constitutive modeling in multiscale simulations of polymer solutions, where different sources of non-Newtonian behavior are modelled independently.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-affine motion and selection of slip coefficient in constitutive modeling of polymeric solutions using a mixed derivative\",\"authors\":\"D. Nieto Simavilla, P. Español, M. Ellero\",\"doi\":\"10.1122/8.0000527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constitutive models for the dynamics of polymer solutions traditionally rely on closure relations for the extra stress or related microstructural variables (e.g., conformation tensor) linking them to flow history. In this work, we study the eigendynamics of the conformation tensor within the GENERIC framework in mesoscopic computer simulations of polymer solutions to separate the effects of nonaffine motion from other sources of non-Newtonian behavior. We observe that nonaffine motion or slip increases with both the polymer concentration and the polymer chain length. Our analysis allows to uniquely calibrate a mixed derivative of the Gordon–Schowalter type in macroscopic models based on a micro-macromapping of the dynamics of the polymeric system. The presented approach paves the way for better polymer constitutive modeling in multiscale simulations of polymer solutions, where different sources of non-Newtonian behavior are modelled independently.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000527\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000527","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

摘要

聚合物溶液动力学的本构模型传统上依赖于额外应力或相关微观结构变量(如构象张量)的闭合关系,将它们与流动历史联系起来。在这项工作中,我们在聚合物溶液的介观计算机模拟中研究了通用框架内构象张量的本征动力学,以将非仿射运动的影响与其他非牛顿行为的来源分开。我们观察到非仿射运动或滑移随聚合物浓度和聚合物链长度的增加而增加。我们的分析允许在基于聚合物系统动力学的微观-宏观映射的宏观模型中独特地校准Gordon-Schowalter类型的混合导数。提出的方法为聚合物溶液的多尺度模拟中更好的聚合物本构建模铺平了道路,其中不同来源的非牛顿行为是独立建模的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-affine motion and selection of slip coefficient in constitutive modeling of polymeric solutions using a mixed derivative
Constitutive models for the dynamics of polymer solutions traditionally rely on closure relations for the extra stress or related microstructural variables (e.g., conformation tensor) linking them to flow history. In this work, we study the eigendynamics of the conformation tensor within the GENERIC framework in mesoscopic computer simulations of polymer solutions to separate the effects of nonaffine motion from other sources of non-Newtonian behavior. We observe that nonaffine motion or slip increases with both the polymer concentration and the polymer chain length. Our analysis allows to uniquely calibrate a mixed derivative of the Gordon–Schowalter type in macroscopic models based on a micro-macromapping of the dynamics of the polymeric system. The presented approach paves the way for better polymer constitutive modeling in multiscale simulations of polymer solutions, where different sources of non-Newtonian behavior are modelled independently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rheology
Journal of Rheology 物理-力学
CiteScore
6.60
自引率
12.10%
发文量
100
审稿时长
1 months
期刊介绍: The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信