初等阿贝尔群的连通k理论的Tate上同调

IF 0.7 4区 数学 Q2 MATHEMATICS
Po Hu, Igor Kriz, Petr Somberg
{"title":"初等阿贝尔群的连通k理论的Tate上同调","authors":"Po Hu,&nbsp;Igor Kriz,&nbsp;Petr Somberg","doi":"10.1007/s40062-018-00229-6","DOIUrl":null,"url":null,"abstract":"<p>Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for <span>\\(G=({\\mathbb {Z}}/2)^n\\)</span> was completely calculated by Bruner and Greenlees (The connective K-theory of finite groups, 2003). In this note, we essentially redo the calculation by a different, more elementary method, and we extend it to <span>\\(p&gt;2\\)</span> prime. We also identify the resulting spectra, which are products of Eilenberg–Mac Lane spectra, and finitely many finite Postnikov towers. For <span>\\(p=2\\)</span>, we also reconcile our answer completely with the result of [2], which is in a different form, and hence the comparison involves some non-trivial combinatorics.</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 3","pages":"749 - 772"},"PeriodicalIF":0.7000,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-00229-6","citationCount":"0","resultStr":"{\"title\":\"Tate cohomology of connected k-theory for elementary abelian groups revisited\",\"authors\":\"Po Hu,&nbsp;Igor Kriz,&nbsp;Petr Somberg\",\"doi\":\"10.1007/s40062-018-00229-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for <span>\\\\(G=({\\\\mathbb {Z}}/2)^n\\\\)</span> was completely calculated by Bruner and Greenlees (The connective K-theory of finite groups, 2003). In this note, we essentially redo the calculation by a different, more elementary method, and we extend it to <span>\\\\(p&gt;2\\\\)</span> prime. We also identify the resulting spectra, which are products of Eilenberg–Mac Lane spectra, and finitely many finite Postnikov towers. For <span>\\\\(p=2\\\\)</span>, we also reconcile our answer completely with the result of [2], which is in a different form, and hence the comparison involves some non-trivial combinatorics.</p>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"14 3\",\"pages\":\"749 - 772\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-00229-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-00229-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-00229-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Bruner和Greenlees (The connective K-theory of finite groups, 2003)完整地计算了\(G=({\mathbb {Z}}/2)^n\)的连接k理论的Tate上同调(以及Borel上同调和上同调)。在这篇笔记中,我们用一种不同的,更基本的方法来重做计算,并将其扩展到\(p>2\) '。我们还确定了所得光谱,它是Eilenberg-Mac Lane光谱和有限个有限波斯特尼科夫塔的产物。对于\(p=2\),我们也将我们的答案与[2]的结果完全一致,这是一种不同的形式,因此比较涉及一些非平凡组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tate cohomology of connected k-theory for elementary abelian groups revisited

Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for \(G=({\mathbb {Z}}/2)^n\) was completely calculated by Bruner and Greenlees (The connective K-theory of finite groups, 2003). In this note, we essentially redo the calculation by a different, more elementary method, and we extend it to \(p>2\) prime. We also identify the resulting spectra, which are products of Eilenberg–Mac Lane spectra, and finitely many finite Postnikov towers. For \(p=2\), we also reconcile our answer completely with the result of [2], which is in a different form, and hence the comparison involves some non-trivial combinatorics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信