基于奇异谱分析可视化的时间序列分量分离:hj双标图方法的应用

Alberto Oliveira da Silva, A. Freitas
{"title":"基于奇异谱分析可视化的时间序列分量分离:hj双标图方法的应用","authors":"Alberto Oliveira da Silva, A. Freitas","doi":"10.19139/soic-2310-5070-897","DOIUrl":null,"url":null,"abstract":"The extraction of essential features of any real-valued time series is crucial for exploring, modeling and producing, for example, forecasts. Taking advantage of the representation of a time series data by its trajectory matrix of Hankel constructed using Singular Spectrum Analysis, as well as of its decomposition through Principal Component Analysis via Partial Least Squares, we implement a graphical display employing the biplot methodology. A diversity of types of biplots can be constructed depending on the two matrices considered in the factorization of the trajectory matrix. In this work, we discuss the called HJ-biplot which yields a simultaneous representation of both rows and columns of the matrix with maximum quality. Interpretation of this type of biplot on Hankel related trajectory matrices is discussed from a real-world data set.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"346-358"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Time Series Components Separation Based on Singular Spectral Analysis Visualization: an HJ-biplot Method Application\",\"authors\":\"Alberto Oliveira da Silva, A. Freitas\",\"doi\":\"10.19139/soic-2310-5070-897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extraction of essential features of any real-valued time series is crucial for exploring, modeling and producing, for example, forecasts. Taking advantage of the representation of a time series data by its trajectory matrix of Hankel constructed using Singular Spectrum Analysis, as well as of its decomposition through Principal Component Analysis via Partial Least Squares, we implement a graphical display employing the biplot methodology. A diversity of types of biplots can be constructed depending on the two matrices considered in the factorization of the trajectory matrix. In this work, we discuss the called HJ-biplot which yields a simultaneous representation of both rows and columns of the matrix with maximum quality. Interpretation of this type of biplot on Hankel related trajectory matrices is discussed from a real-world data set.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"346-358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提取任何实值时间序列的基本特征对于探索、建模和生成(例如)预测至关重要。利用奇异谱分析构建的Hankel轨迹矩阵对时间序列数据的表示,以及偏最小二乘主成分分析对时间序列的分解,我们采用双图方法实现了图形显示。根据轨迹矩阵因子分解中考虑的两个矩阵,可以构造多种类型的双拍片。在这项工作中,我们讨论了称为HJ biplot的矩阵,它以最大质量同时表示矩阵的行和列。从真实世界的数据集讨论了Hankel相关轨迹矩阵上这种类型的双拍片的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Components Separation Based on Singular Spectral Analysis Visualization: an HJ-biplot Method Application
The extraction of essential features of any real-valued time series is crucial for exploring, modeling and producing, for example, forecasts. Taking advantage of the representation of a time series data by its trajectory matrix of Hankel constructed using Singular Spectrum Analysis, as well as of its decomposition through Principal Component Analysis via Partial Least Squares, we implement a graphical display employing the biplot methodology. A diversity of types of biplots can be constructed depending on the two matrices considered in the factorization of the trajectory matrix. In this work, we discuss the called HJ-biplot which yields a simultaneous representation of both rows and columns of the matrix with maximum quality. Interpretation of this type of biplot on Hankel related trajectory matrices is discussed from a real-world data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信