Afees A. Salisu, Christian Pierdzioch, Rangan Gupta, Reneé van Eyden
{"title":"气候风险和美国股市尾部风险:一项使用一个多世纪数据的预测实验","authors":"Afees A. Salisu, Christian Pierdzioch, Rangan Gupta, Reneé van Eyden","doi":"10.1111/irfi.12397","DOIUrl":null,"url":null,"abstract":"<p>We examine the predictive value of the uncertainty associated with growth in temperature for stock-market tail risk in the United States using monthly data that cover the sample period from 1895:02 to 2021:08. To this end, we measure stock-market tail risk by means of the popular Conditional Autoregressive Value at Risk (CAViaR) model. Our results show that accounting for the predictive value of the uncertainty associated with growth in temperature, as measured either by means of standard generalized autoregressive conditional heteroskedasticity (GARCH) models or a stochastic-volatility (SV) model, mainly is beneficial for a forecaster who suffers a sufficiently higher loss from an underestimation of tail risk than from a comparable overestimation.</p>","PeriodicalId":46664,"journal":{"name":"International Review of Finance","volume":"23 2","pages":"228-244"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Climate risks and U.S. stock-market tail risks: A forecasting experiment using over a century of data\",\"authors\":\"Afees A. Salisu, Christian Pierdzioch, Rangan Gupta, Reneé van Eyden\",\"doi\":\"10.1111/irfi.12397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We examine the predictive value of the uncertainty associated with growth in temperature for stock-market tail risk in the United States using monthly data that cover the sample period from 1895:02 to 2021:08. To this end, we measure stock-market tail risk by means of the popular Conditional Autoregressive Value at Risk (CAViaR) model. Our results show that accounting for the predictive value of the uncertainty associated with growth in temperature, as measured either by means of standard generalized autoregressive conditional heteroskedasticity (GARCH) models or a stochastic-volatility (SV) model, mainly is beneficial for a forecaster who suffers a sufficiently higher loss from an underestimation of tail risk than from a comparable overestimation.</p>\",\"PeriodicalId\":46664,\"journal\":{\"name\":\"International Review of Finance\",\"volume\":\"23 2\",\"pages\":\"228-244\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/irfi.12397\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/irfi.12397","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Climate risks and U.S. stock-market tail risks: A forecasting experiment using over a century of data
We examine the predictive value of the uncertainty associated with growth in temperature for stock-market tail risk in the United States using monthly data that cover the sample period from 1895:02 to 2021:08. To this end, we measure stock-market tail risk by means of the popular Conditional Autoregressive Value at Risk (CAViaR) model. Our results show that accounting for the predictive value of the uncertainty associated with growth in temperature, as measured either by means of standard generalized autoregressive conditional heteroskedasticity (GARCH) models or a stochastic-volatility (SV) model, mainly is beneficial for a forecaster who suffers a sufficiently higher loss from an underestimation of tail risk than from a comparable overestimation.
期刊介绍:
The International Review of Finance (IRF) publishes high-quality research on all aspects of financial economics, including traditional areas such as asset pricing, corporate finance, market microstructure, financial intermediation and regulation, financial econometrics, financial engineering and risk management, as well as new areas such as markets and institutions of emerging market economies, especially those in the Asia-Pacific region. In addition, the Letters Section in IRF is a premium outlet of letter-length research in all fields of finance. The length of the articles in the Letters Section is limited to a maximum of eight journal pages.