与广义四元数环相关的极小环

IF 0.5 Q3 MATHEMATICS
{"title":"与广义四元数环相关的极小环","authors":"","doi":"10.24330/ieja.1281705","DOIUrl":null,"url":null,"abstract":"The family of rings of the form \n\\frac{\\mathbb{Z}_{4}\\left \\langle x,y \\right \\rangle}{\\left \\langle x^2-a,y^2-b,yx-xy-2(c+dx+ey+fxy) \\right \\rangle} \nis investigated which contains the generalized Hamilton quaternions over $\\Z_4$. These rings are local rings of order 256. This family has 256 rings contained in 88 distinct isomorphism classes. Of the 88 non-isomorphic rings, 10 are minimal reversible nonsymmetric rings and 21 are minimal abelian reflexive nonsemicommutative rings. Few such examples have been identified in the literature thus far. The computational methods used to identify the isomorphism classes are also highlighted. Finally, some generalized Hamilton quaternion rings over $\\Z_{p^s}$ are characterized.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal rings related to generalized quaternion rings\",\"authors\":\"\",\"doi\":\"10.24330/ieja.1281705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The family of rings of the form \\n\\\\frac{\\\\mathbb{Z}_{4}\\\\left \\\\langle x,y \\\\right \\\\rangle}{\\\\left \\\\langle x^2-a,y^2-b,yx-xy-2(c+dx+ey+fxy) \\\\right \\\\rangle} \\nis investigated which contains the generalized Hamilton quaternions over $\\\\Z_4$. These rings are local rings of order 256. This family has 256 rings contained in 88 distinct isomorphism classes. Of the 88 non-isomorphic rings, 10 are minimal reversible nonsymmetric rings and 21 are minimal abelian reflexive nonsemicommutative rings. Few such examples have been identified in the literature thus far. The computational methods used to identify the isomorphism classes are also highlighted. Finally, some generalized Hamilton quaternion rings over $\\\\Z_{p^s}$ are characterized.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1281705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1281705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

形式为\frac{\mathbb的环族{Z}_{4} 研究了$\Z_4$上包含广义Hamilton四元数的\left\langle x,y\right\langle}{\left\ langle x^2-a,y^2-b,yx-xy-2(c+dx+ey+fxy)\right\rangle}。这些环是256阶的局部环。这个族有256个环,包含在88个不同的同构类中。在88个非同构环中,10个是极小可逆非对称环,21个是极小阿贝尔自反非共交换环。到目前为止,在文献中很少发现这样的例子。还强调了用于识别同构类的计算方法。最后,刻画了$\Z_{p^s}$上的一些广义Hamilton四元数环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal rings related to generalized quaternion rings
The family of rings of the form \frac{\mathbb{Z}_{4}\left \langle x,y \right \rangle}{\left \langle x^2-a,y^2-b,yx-xy-2(c+dx+ey+fxy) \right \rangle} is investigated which contains the generalized Hamilton quaternions over $\Z_4$. These rings are local rings of order 256. This family has 256 rings contained in 88 distinct isomorphism classes. Of the 88 non-isomorphic rings, 10 are minimal reversible nonsymmetric rings and 21 are minimal abelian reflexive nonsemicommutative rings. Few such examples have been identified in the literature thus far. The computational methods used to identify the isomorphism classes are also highlighted. Finally, some generalized Hamilton quaternion rings over $\Z_{p^s}$ are characterized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信