疟原虫特有的氧化还原活性蛋白plasmoredoxin的晶体结构

IF 2.7 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karin Fritz-Wolf , Jochen Bathke , Stefan Rahlfs , Katja Becker
{"title":"疟原虫特有的氧化还原活性蛋白plasmoredoxin的晶体结构","authors":"Karin Fritz-Wolf ,&nbsp;Jochen Bathke ,&nbsp;Stefan Rahlfs ,&nbsp;Katja Becker","doi":"10.1016/j.crstbi.2022.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Plasmoredoxin is a 22 ​kDa thiol–disulfide oxidoreductase involved in cellular redox regulatory processes and antioxidant defense. The 1.6 ​Å structure of the protein, solved via X-ray crystallography, adopts a modified thioredoxin fold. The structure reveals that plasmoredoxin, unique for malarial parasites, forms a new subgroup of thioredoxin-like proteins together with tryparedoxin, unique for kinetoplastids. Unlike most members of this superfamily, Plrx does not have a proline residue within the CxxC redox motif. In addition, the Plrx structure has a distinct C-terminal domain. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers, which are also structurally similar to the human thioredoxin dimer, and, as in humans, plasmoredoxin is inactive as a dimer. Monomer–dimer equilibrium depends on the surrounding redox conditions, which could support the parasite in reacting to oxidative challenges. Based on structural considerations, the residues of the dimer interface are likely to interact with target proteins. In contrast to <em>human</em> and <em>Plasmodium falciparum</em> thioredoxin, however, there is a cluster of positively charged residues at the dimer interface of plasmoredoxin. These intersubunit (lysine) residues might allow binding of the protein to cellular membranes or to plasminogen. Malaria parasites lack catalase and glutathione peroxidase and therefore depend on their other glutathione and thioredoxin-dependent redox relays. Plasmoredoxin could be part of a so far unknown electron transfer system that only occurs in these parasites. Since the surface charge of plasmoredoxin differs significantly from other members of the thioredoxin superfamily, its three-dimensional structure can provide a model for designing selective redox-modulatory inhibitors.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665928X22000083/pdfft?md5=35e1363adb6c298eb202cea0c5605a65&pid=1-s2.0-S2665928X22000083-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Crystal structure of plasmoredoxin, a redox-active protein unique for malaria parasites\",\"authors\":\"Karin Fritz-Wolf ,&nbsp;Jochen Bathke ,&nbsp;Stefan Rahlfs ,&nbsp;Katja Becker\",\"doi\":\"10.1016/j.crstbi.2022.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasmoredoxin is a 22 ​kDa thiol–disulfide oxidoreductase involved in cellular redox regulatory processes and antioxidant defense. The 1.6 ​Å structure of the protein, solved via X-ray crystallography, adopts a modified thioredoxin fold. The structure reveals that plasmoredoxin, unique for malarial parasites, forms a new subgroup of thioredoxin-like proteins together with tryparedoxin, unique for kinetoplastids. Unlike most members of this superfamily, Plrx does not have a proline residue within the CxxC redox motif. In addition, the Plrx structure has a distinct C-terminal domain. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers, which are also structurally similar to the human thioredoxin dimer, and, as in humans, plasmoredoxin is inactive as a dimer. Monomer–dimer equilibrium depends on the surrounding redox conditions, which could support the parasite in reacting to oxidative challenges. Based on structural considerations, the residues of the dimer interface are likely to interact with target proteins. In contrast to <em>human</em> and <em>Plasmodium falciparum</em> thioredoxin, however, there is a cluster of positively charged residues at the dimer interface of plasmoredoxin. These intersubunit (lysine) residues might allow binding of the protein to cellular membranes or to plasminogen. Malaria parasites lack catalase and glutathione peroxidase and therefore depend on their other glutathione and thioredoxin-dependent redox relays. Plasmoredoxin could be part of a so far unknown electron transfer system that only occurs in these parasites. Since the surface charge of plasmoredoxin differs significantly from other members of the thioredoxin superfamily, its three-dimensional structure can provide a model for designing selective redox-modulatory inhibitors.</p></div>\",\"PeriodicalId\":10870,\"journal\":{\"name\":\"Current Research in Structural Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665928X22000083/pdfft?md5=35e1363adb6c298eb202cea0c5605a65&pid=1-s2.0-S2665928X22000083-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665928X22000083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X22000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Plasmoredoxin是一种22 kDa的硫醇二硫氧化还原酶,参与细胞氧化还原调节过程和抗氧化防御。该蛋白的1.6 Å结构通过x射线晶体学解析,采用了一种修饰的硫氧还蛋白折叠。该结构揭示了疟原虫特有的plasmoredoxin与着丝质体特有的tryparedoxin一起形成了一个新的硫氧还蛋白样蛋白亚群。与这个超家族的大多数成员不同,Plrx在CxxC氧化还原基序中没有脯氨酸残基。此外,Plrx结构具有明显的c端结构域。与人类硫氧还蛋白类似,plasmoredoxin形成单体和二聚体,其结构也与人类硫氧还蛋白二聚体相似,并且,与人类一样,plasmoredoxin作为二聚体是无活性的。单体-二聚体的平衡取决于周围的氧化还原条件,这可能支持寄生虫对氧化挑战的反应。基于结构的考虑,二聚体界面的残基可能与靶蛋白相互作用。然而,与人类和恶性疟原虫硫氧还蛋白不同的是,在硫氧还蛋白的二聚体界面上有一簇带正电的残基。这些亚基间(赖氨酸)残基可能使蛋白质与细胞膜或纤溶酶原结合。疟疾寄生虫缺乏过氧化氢酶和谷胱甘肽过氧化物酶,因此依赖于它们的其他谷胱甘肽和硫氧还蛋白依赖的氧化还原继电器。Plasmoredoxin可能是迄今为止未知的电子传递系统的一部分,这种系统只发生在这些寄生虫中。由于plasmoredoxin的表面电荷与硫氧还蛋白超家族的其他成员有很大的不同,它的三维结构可以为设计选择性氧化还原调节抑制剂提供一个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal structure of plasmoredoxin, a redox-active protein unique for malaria parasites

Crystal structure of plasmoredoxin, a redox-active protein unique for malaria parasites

Plasmoredoxin is a 22 ​kDa thiol–disulfide oxidoreductase involved in cellular redox regulatory processes and antioxidant defense. The 1.6 ​Å structure of the protein, solved via X-ray crystallography, adopts a modified thioredoxin fold. The structure reveals that plasmoredoxin, unique for malarial parasites, forms a new subgroup of thioredoxin-like proteins together with tryparedoxin, unique for kinetoplastids. Unlike most members of this superfamily, Plrx does not have a proline residue within the CxxC redox motif. In addition, the Plrx structure has a distinct C-terminal domain. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers, which are also structurally similar to the human thioredoxin dimer, and, as in humans, plasmoredoxin is inactive as a dimer. Monomer–dimer equilibrium depends on the surrounding redox conditions, which could support the parasite in reacting to oxidative challenges. Based on structural considerations, the residues of the dimer interface are likely to interact with target proteins. In contrast to human and Plasmodium falciparum thioredoxin, however, there is a cluster of positively charged residues at the dimer interface of plasmoredoxin. These intersubunit (lysine) residues might allow binding of the protein to cellular membranes or to plasminogen. Malaria parasites lack catalase and glutathione peroxidase and therefore depend on their other glutathione and thioredoxin-dependent redox relays. Plasmoredoxin could be part of a so far unknown electron transfer system that only occurs in these parasites. Since the surface charge of plasmoredoxin differs significantly from other members of the thioredoxin superfamily, its three-dimensional structure can provide a model for designing selective redox-modulatory inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
33
审稿时长
104 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信