{"title":"某些函数类的精炼玻尔不等式:解析函数、一元函数和凸函数","authors":"S. Ahammed, M. B. Ahamed","doi":"10.4153/s0008439523000474","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>In this article, we prove several refined versions of the classical Bohr inequality for the class of analytic self-mappings on the unit disk <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0008439523000474_inline1.png\" />\n\t\t<jats:tex-math>\n$ \\mathbb {D} $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, class of analytic functions <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0008439523000474_inline2.png\" />\n\t\t<jats:tex-math>\n$ f $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> defined on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0008439523000474_inline3.png\" />\n\t\t<jats:tex-math>\n$ \\mathbb {D} $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> such that <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0008439523000474_inline4.png\" />\n\t\t<jats:tex-math>\n$\\mathrm {Re}\\left (f(z)\\right )<1 $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and class of subordination to a function <jats:italic>g</jats:italic> in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0008439523000474_inline5.png\" />\n\t\t<jats:tex-math>\n$ \\mathbb {D} $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Consequently, the main results of this article are established as certainly improved versions of several existing results. All the results are proved to be sharp.</jats:p>","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Refined Bohr inequalities for certain classes of functions: analytic, univalent, and convex\",\"authors\":\"S. Ahammed, M. B. Ahamed\",\"doi\":\"10.4153/s0008439523000474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>In this article, we prove several refined versions of the classical Bohr inequality for the class of analytic self-mappings on the unit disk <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0008439523000474_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$ \\\\mathbb {D} $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, class of analytic functions <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0008439523000474_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$ f $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> defined on <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0008439523000474_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$ \\\\mathbb {D} $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> such that <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0008439523000474_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathrm {Re}\\\\left (f(z)\\\\right )<1 $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, and class of subordination to a function <jats:italic>g</jats:italic> in <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0008439523000474_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$ \\\\mathbb {D} $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Consequently, the main results of this article are established as certainly improved versions of several existing results. All the results are proved to be sharp.</jats:p>\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000474\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000474","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Refined Bohr inequalities for certain classes of functions: analytic, univalent, and convex
In this article, we prove several refined versions of the classical Bohr inequality for the class of analytic self-mappings on the unit disk
$ \mathbb {D} $
, class of analytic functions
$ f $
defined on
$ \mathbb {D} $
such that
$\mathrm {Re}\left (f(z)\right )<1 $
, and class of subordination to a function g in
$ \mathbb {D} $
. Consequently, the main results of this article are established as certainly improved versions of several existing results. All the results are proved to be sharp.
期刊介绍:
The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year.
To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics.
Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année.
Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.