渐进式混合滤波下广义半正态分布的参数估计与预测

IF 0.1 Q4 STATISTICS & PROBABILITY
Farha Sultana, Y. Tripathi, M. K. Rastogi
{"title":"渐进式混合滤波下广义半正态分布的参数估计与预测","authors":"Farha Sultana, Y. Tripathi, M. K. Rastogi","doi":"10.29252/JIRSS.18.1.191","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of estimating unknown parameters of a generalized halfnormal distribution is considered under Type II progressive hybrid censoring which is a combination of Type II progressive and hybrid censoring schemes. We obtain maximum likelihood estimators of parameters and also construct asymptotic intervals using the observed Fisher information matrix. Further Bayes estimates are computed under the squared error loss function by applying different approximation methods. We also obtain prediction estimates and prediction intervals of censored observations. The performance of different methods is compared using Monte Carlo simulations and a real data set is analyzed for illustrative purposes.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parameter Estimation and Prediction for the Generalized Half Normal Distribution under Progressive Hybrid Censoring\",\"authors\":\"Farha Sultana, Y. Tripathi, M. K. Rastogi\",\"doi\":\"10.29252/JIRSS.18.1.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of estimating unknown parameters of a generalized halfnormal distribution is considered under Type II progressive hybrid censoring which is a combination of Type II progressive and hybrid censoring schemes. We obtain maximum likelihood estimators of parameters and also construct asymptotic intervals using the observed Fisher information matrix. Further Bayes estimates are computed under the squared error loss function by applying different approximation methods. We also obtain prediction estimates and prediction intervals of censored observations. The performance of different methods is compared using Monte Carlo simulations and a real data set is analyzed for illustrative purposes.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/JIRSS.18.1.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.18.1.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了在II型渐进混合删失下广义半正态分布未知参数的估计问题,该删失是II型渐进和混合删失方案的组合。我们得到了参数的最大似然估计量,并利用观测到的Fisher信息矩阵构造了渐近区间。通过应用不同的近似方法,在平方误差损失函数下计算进一步的贝叶斯估计。我们还获得了截尾观测的预测估计和预测区间。使用蒙特卡罗模拟比较了不同方法的性能,并分析了实际数据集以便于说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation and Prediction for the Generalized Half Normal Distribution under Progressive Hybrid Censoring
In this paper, the problem of estimating unknown parameters of a generalized halfnormal distribution is considered under Type II progressive hybrid censoring which is a combination of Type II progressive and hybrid censoring schemes. We obtain maximum likelihood estimators of parameters and also construct asymptotic intervals using the observed Fisher information matrix. Further Bayes estimates are computed under the squared error loss function by applying different approximation methods. We also obtain prediction estimates and prediction intervals of censored observations. The performance of different methods is compared using Monte Carlo simulations and a real data set is analyzed for illustrative purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信