基于$n$-立方体的自相似集上的组合Fredholm模

IF 1.1 4区 数学 Q1 MATHEMATICS
T. Maruyama, Tatsuki Seto
{"title":"基于$n$-立方体的自相似集上的组合Fredholm模","authors":"T. Maruyama, Tatsuki Seto","doi":"10.4171/jfg/132","DOIUrl":null,"url":null,"abstract":"We construct a Fredholm module on self-similar sets such as the Cantor dust, the Sierpinski carpet and the Menger sponge. Our construction is a higher dimensional analogue of Connes' combinatorial construction of the Fredholm module on the Cantor set. We also calculate the Dixmier trace of two operators induced by the Fredholm module.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A combinatorial Fredholm module on self-similar sets built on $n$-cubes\",\"authors\":\"T. Maruyama, Tatsuki Seto\",\"doi\":\"10.4171/jfg/132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a Fredholm module on self-similar sets such as the Cantor dust, the Sierpinski carpet and the Menger sponge. Our construction is a higher dimensional analogue of Connes' combinatorial construction of the Fredholm module on the Cantor set. We also calculate the Dixmier trace of two operators induced by the Fredholm module.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/132\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/132","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们在自相似集(如康托尘、谢尔宾斯基地毯和门格尔海绵)上构造了一个Fredholm模块。我们的构造是Connes在康托集上的Fredholm模块的组合构造的高维模拟。我们还计算了由Fredholm模引起的两个算子的Dixmier迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combinatorial Fredholm module on self-similar sets built on $n$-cubes
We construct a Fredholm module on self-similar sets such as the Cantor dust, the Sierpinski carpet and the Menger sponge. Our construction is a higher dimensional analogue of Connes' combinatorial construction of the Fredholm module on the Cantor set. We also calculate the Dixmier trace of two operators induced by the Fredholm module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信