{"title":"基于$n$-立方体的自相似集上的组合Fredholm模","authors":"T. Maruyama, Tatsuki Seto","doi":"10.4171/jfg/132","DOIUrl":null,"url":null,"abstract":"We construct a Fredholm module on self-similar sets such as the Cantor dust, the Sierpinski carpet and the Menger sponge. Our construction is a higher dimensional analogue of Connes' combinatorial construction of the Fredholm module on the Cantor set. We also calculate the Dixmier trace of two operators induced by the Fredholm module.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A combinatorial Fredholm module on self-similar sets built on $n$-cubes\",\"authors\":\"T. Maruyama, Tatsuki Seto\",\"doi\":\"10.4171/jfg/132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a Fredholm module on self-similar sets such as the Cantor dust, the Sierpinski carpet and the Menger sponge. Our construction is a higher dimensional analogue of Connes' combinatorial construction of the Fredholm module on the Cantor set. We also calculate the Dixmier trace of two operators induced by the Fredholm module.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/132\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/132","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A combinatorial Fredholm module on self-similar sets built on $n$-cubes
We construct a Fredholm module on self-similar sets such as the Cantor dust, the Sierpinski carpet and the Menger sponge. Our construction is a higher dimensional analogue of Connes' combinatorial construction of the Fredholm module on the Cantor set. We also calculate the Dixmier trace of two operators induced by the Fredholm module.