无穷大质量低正则性空间中的非线性Schrödinger方程

IF 1.8 4区 数学 Q1 MATHEMATICS
Vanessa Barros, Simão Correia, Filipe Oliveira
{"title":"无穷大质量低正则性空间中的非线性Schrödinger方程","authors":"Vanessa Barros, Simão Correia, Filipe Oliveira","doi":"10.57262/die035-0708-371","DOIUrl":null,"url":null,"abstract":"We study the nonlinear Schr\\\"odinger equation with initial data in $\\mathcal{Z}^s_p(\\mathbb{R}^d)=\\dot{H}^s(\\mathbb{R}^d)\\cap L^p(\\mathbb{R}^d)$, where $0<s<\\min\\{d/2,1\\}$ and $2<p<2d/(d-2s)$. After showing that the linear Schr\\\"odinger group is well-defined in this space, we prove local well-posedness in the whole range of parameters $s$ and $p$. The precise properties of the solution depend on the relation between the power of the nonlinearity and the integrability $p$. Finally, we present a global existence result for the defocusing cubic equation in dimension three for initial data with infinite mass and energy, using a variant of the Fourier truncation method.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity\",\"authors\":\"Vanessa Barros, Simão Correia, Filipe Oliveira\",\"doi\":\"10.57262/die035-0708-371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the nonlinear Schr\\\\\\\"odinger equation with initial data in $\\\\mathcal{Z}^s_p(\\\\mathbb{R}^d)=\\\\dot{H}^s(\\\\mathbb{R}^d)\\\\cap L^p(\\\\mathbb{R}^d)$, where $0<s<\\\\min\\\\{d/2,1\\\\}$ and $2<p<2d/(d-2s)$. After showing that the linear Schr\\\\\\\"odinger group is well-defined in this space, we prove local well-posedness in the whole range of parameters $s$ and $p$. The precise properties of the solution depend on the relation between the power of the nonlinearity and the integrability $p$. Finally, we present a global existence result for the defocusing cubic equation in dimension three for initial data with infinite mass and energy, using a variant of the Fourier truncation method.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die035-0708-371\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-0708-371","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了初始数据为$\mathcal{Z}^s_p(\mathbb{R}^d)=\dot{H}^s(\mathbb{R}^ d)\cop L^ p(\math bb{R}^)$的非线性Schr“odinger方程,其中$0<s<min\{d/2,1}$和$2<p<2d/(d-2s)$。在证明线性Schr”odinger群在该空间中是明确的之后,我们证明了整个参数范围内的局部适定性性。解的精确性质取决于非线性的幂和可积性$p$之间的关系。最后,我们使用傅立叶截断方法的一个变体,给出了具有无限质量和能量的初始数据的三维散焦三次方程的全局存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity
We study the nonlinear Schr\"odinger equation with initial data in $\mathcal{Z}^s_p(\mathbb{R}^d)=\dot{H}^s(\mathbb{R}^d)\cap L^p(\mathbb{R}^d)$, where $0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信