{"title":"非局部物质空间涡密度的度量惯性","authors":"I. Bulyzhenkov","doi":"10.1080/14685248.2021.1953698","DOIUrl":null,"url":null,"abstract":"ABSTRACT Monistic thermomechanics of eddy mater-space with metric stresses of Maxwellian type and inelastic metric waves can be developed for purely kinetic densities of the nonlocal mass-energy integral. Pseudo-Riemannian 4-geometry uses locally warped time to preserve the Euclidean sublight transport of nonlocally correlated densities with instantaneous metric connections and coherent conservation of local 4-currents everywhere. The kinematic viscosity of geometrised energy-momentum densities and their geodesic self-pushes by correlated metric stresses quantitatively clarify the adaptive all-unity of continuous kinetic energy, including material ether or variable rest-energy. The metric self-organisation of matter-space+time implies a nonlocal feedback of correlated eddy densities and their tensor response to the vector density of external forces. Such tensor inertial responses of correlated metric stresses reveal the nonlocal nature of turbulence and predict adaptive auto-modes or thermal waves of Euclidean material space due to the modified geodesic equation with viscose autowaves and the inverse Cavendish constant. The proposed nonlocal alternative to Euler/Navier-Stokes hydrodynamics can distinguish between Cartesian and Newtonian worldviews in conceptual laboratory probes of new macroscopic mechanics for metric self-organisations of thermokinetic energies of viscose material space without negative gravitational energies.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"22 1","pages":"623 - 639"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metric inertia for eddy densities of nonlocal matter-space\",\"authors\":\"I. Bulyzhenkov\",\"doi\":\"10.1080/14685248.2021.1953698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Monistic thermomechanics of eddy mater-space with metric stresses of Maxwellian type and inelastic metric waves can be developed for purely kinetic densities of the nonlocal mass-energy integral. Pseudo-Riemannian 4-geometry uses locally warped time to preserve the Euclidean sublight transport of nonlocally correlated densities with instantaneous metric connections and coherent conservation of local 4-currents everywhere. The kinematic viscosity of geometrised energy-momentum densities and their geodesic self-pushes by correlated metric stresses quantitatively clarify the adaptive all-unity of continuous kinetic energy, including material ether or variable rest-energy. The metric self-organisation of matter-space+time implies a nonlocal feedback of correlated eddy densities and their tensor response to the vector density of external forces. Such tensor inertial responses of correlated metric stresses reveal the nonlocal nature of turbulence and predict adaptive auto-modes or thermal waves of Euclidean material space due to the modified geodesic equation with viscose autowaves and the inverse Cavendish constant. The proposed nonlocal alternative to Euler/Navier-Stokes hydrodynamics can distinguish between Cartesian and Newtonian worldviews in conceptual laboratory probes of new macroscopic mechanics for metric self-organisations of thermokinetic energies of viscose material space without negative gravitational energies.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":\"22 1\",\"pages\":\"623 - 639\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2021.1953698\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.1953698","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Metric inertia for eddy densities of nonlocal matter-space
ABSTRACT Monistic thermomechanics of eddy mater-space with metric stresses of Maxwellian type and inelastic metric waves can be developed for purely kinetic densities of the nonlocal mass-energy integral. Pseudo-Riemannian 4-geometry uses locally warped time to preserve the Euclidean sublight transport of nonlocally correlated densities with instantaneous metric connections and coherent conservation of local 4-currents everywhere. The kinematic viscosity of geometrised energy-momentum densities and their geodesic self-pushes by correlated metric stresses quantitatively clarify the adaptive all-unity of continuous kinetic energy, including material ether or variable rest-energy. The metric self-organisation of matter-space+time implies a nonlocal feedback of correlated eddy densities and their tensor response to the vector density of external forces. Such tensor inertial responses of correlated metric stresses reveal the nonlocal nature of turbulence and predict adaptive auto-modes or thermal waves of Euclidean material space due to the modified geodesic equation with viscose autowaves and the inverse Cavendish constant. The proposed nonlocal alternative to Euler/Navier-Stokes hydrodynamics can distinguish between Cartesian and Newtonian worldviews in conceptual laboratory probes of new macroscopic mechanics for metric self-organisations of thermokinetic energies of viscose material space without negative gravitational energies.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.