{"title":"关于有限环代数F[M(Cm p x C2, 2)]","authors":"Swati Sidana","doi":"10.56415/qrs.v30.28","DOIUrl":null,"url":null,"abstract":"Let G = Cm p o C2 be a generalized dihedral group for an odd prime p and a natural number m, L = M(G; 2) be the RA2 loop obtained from G and F be a finite field of characteristic 2. For the loop algebra F[L], we determine the Jacobson radical J(F[L]) of F[L] and the Wedderburn decomposition of F[L]=J(F[L]). The structure of 1 + J(F[L]) is also determined.","PeriodicalId":38681,"journal":{"name":"Quasigroups and Related Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the finite loop algebra F[M(Cm p x C2, 2)]\",\"authors\":\"Swati Sidana\",\"doi\":\"10.56415/qrs.v30.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G = Cm p o C2 be a generalized dihedral group for an odd prime p and a natural number m, L = M(G; 2) be the RA2 loop obtained from G and F be a finite field of characteristic 2. For the loop algebra F[L], we determine the Jacobson radical J(F[L]) of F[L] and the Wedderburn decomposition of F[L]=J(F[L]). The structure of 1 + J(F[L]) is also determined.\",\"PeriodicalId\":38681,\"journal\":{\"name\":\"Quasigroups and Related Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quasigroups and Related Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/qrs.v30.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quasigroups and Related Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/qrs.v30.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
设G = Cm p o C2是奇数素数p和自然数m的广义二面体群,L = m (G;2)为由G和F得到的RA2环,为特征为2的有限域。对于循环代数F[L],我们确定了F[L]的Jacobson根J(F[L])和F[L]的Wedderburn分解=J(F[L])。确定了1 + J(F[L])的结构。
Let G = Cm p o C2 be a generalized dihedral group for an odd prime p and a natural number m, L = M(G; 2) be the RA2 loop obtained from G and F be a finite field of characteristic 2. For the loop algebra F[L], we determine the Jacobson radical J(F[L]) of F[L] and the Wedderburn decomposition of F[L]=J(F[L]). The structure of 1 + J(F[L]) is also determined.