关于有限环代数F[M(Cm p x C2, 2)]

Q3 Mathematics
Swati Sidana
{"title":"关于有限环代数F[M(Cm p x C2, 2)]","authors":"Swati Sidana","doi":"10.56415/qrs.v30.28","DOIUrl":null,"url":null,"abstract":"Let G = Cm p o C2 be a generalized dihedral group for an odd prime p and a natural number m, L = M(G; 2) be the RA2 loop obtained from G and F be a finite field of characteristic 2. For the loop algebra F[L], we determine the Jacobson radical J(F[L]) of F[L] and the Wedderburn decomposition of F[L]=J(F[L]). The structure of 1 + J(F[L]) is also determined.","PeriodicalId":38681,"journal":{"name":"Quasigroups and Related Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the finite loop algebra F[M(Cm p x C2, 2)]\",\"authors\":\"Swati Sidana\",\"doi\":\"10.56415/qrs.v30.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G = Cm p o C2 be a generalized dihedral group for an odd prime p and a natural number m, L = M(G; 2) be the RA2 loop obtained from G and F be a finite field of characteristic 2. For the loop algebra F[L], we determine the Jacobson radical J(F[L]) of F[L] and the Wedderburn decomposition of F[L]=J(F[L]). The structure of 1 + J(F[L]) is also determined.\",\"PeriodicalId\":38681,\"journal\":{\"name\":\"Quasigroups and Related Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quasigroups and Related Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/qrs.v30.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quasigroups and Related Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/qrs.v30.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设G = Cm p o C2是奇数素数p和自然数m的广义二面体群,L = m (G;2)为由G和F得到的RA2环,为特征为2的有限域。对于循环代数F[L],我们确定了F[L]的Jacobson根J(F[L])和F[L]的Wedderburn分解=J(F[L])。确定了1 + J(F[L])的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the finite loop algebra F[M(Cm p x C2, 2)]
Let G = Cm p o C2 be a generalized dihedral group for an odd prime p and a natural number m, L = M(G; 2) be the RA2 loop obtained from G and F be a finite field of characteristic 2. For the loop algebra F[L], we determine the Jacobson radical J(F[L]) of F[L] and the Wedderburn decomposition of F[L]=J(F[L]). The structure of 1 + J(F[L]) is also determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quasigroups and Related Systems
Quasigroups and Related Systems Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信