关于球形水刺精确拉格朗日填充数无限的注记

IF 0.7 3区 数学 Q2 MATHEMATICS
R. Golovko
{"title":"关于球形水刺精确拉格朗日填充数无限的注记","authors":"R. Golovko","doi":"10.2140/pjm.2022.317.143","DOIUrl":null,"url":null,"abstract":"In this short note we discuss high-dimensional examples of Legendrian submanifolds of the standard contact Euclidean space with an infinite number of exact Lagrangian fillings up to Hamiltonian isotopy. They are obtained from the examples of Casals and Ng by applying to them the spherical spinning construction.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A note on the infinite number of exact Lagrangian fillings for spherical spuns\",\"authors\":\"R. Golovko\",\"doi\":\"10.2140/pjm.2022.317.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note we discuss high-dimensional examples of Legendrian submanifolds of the standard contact Euclidean space with an infinite number of exact Lagrangian fillings up to Hamiltonian isotopy. They are obtained from the examples of Casals and Ng by applying to them the spherical spinning construction.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.317.143\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.317.143","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

在这篇简短的笔记中,我们讨论了具有无限数量精确拉格朗日填充直至哈密顿同位素的标准接触欧几里得空间的Legendrian子流形的高维例子。将球旋构造应用到Casals和Ng的例子中,得到了它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the infinite number of exact Lagrangian fillings for spherical spuns
In this short note we discuss high-dimensional examples of Legendrian submanifolds of the standard contact Euclidean space with an infinite number of exact Lagrangian fillings up to Hamiltonian isotopy. They are obtained from the examples of Casals and Ng by applying to them the spherical spinning construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信