{"title":"MAX相作为功能材料的薄膜生长","authors":"Abhijit Biswas, Varun Natu, Anand B. Puthirath","doi":"10.1093/oxfmat/itab020","DOIUrl":null,"url":null,"abstract":"\n Layered nanolaminate ternary carbides, nitrides and carbonitrides with general formula Mn+1 AXn or MAX (n = 1, 2, or 3, M is an early transition metal, A is mostly group 13 or 14 element, and X is C and/or N) has revolutionized the world of nanomaterials, due to the coexistence of both ceramic and metallic nature, giving rise to exceptional mechanical, thermal, electrical, chemical properties and wide range of applications. Although several solid-state bulk synthesis methods have been developed to produce a variety of MAX phases, however, for certain applications, the growth of MAX phases, especially in its high-quality epitaxial thin films form is of increasing interest. Here, we summarize the progress made thus far in epitaxial growth and property evaluation of MAX phase thin films grown by various deposition techniques. We also address the important future research directions to be made in terms of thin-film growth. Overall, in the future, high-quality single-phase epitaxial thin film growth and engineering of chemically diverse MAX phases may open up interesting new avenues for next-generation technology.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thin film growth of MAX phases as functional materials\",\"authors\":\"Abhijit Biswas, Varun Natu, Anand B. Puthirath\",\"doi\":\"10.1093/oxfmat/itab020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Layered nanolaminate ternary carbides, nitrides and carbonitrides with general formula Mn+1 AXn or MAX (n = 1, 2, or 3, M is an early transition metal, A is mostly group 13 or 14 element, and X is C and/or N) has revolutionized the world of nanomaterials, due to the coexistence of both ceramic and metallic nature, giving rise to exceptional mechanical, thermal, electrical, chemical properties and wide range of applications. Although several solid-state bulk synthesis methods have been developed to produce a variety of MAX phases, however, for certain applications, the growth of MAX phases, especially in its high-quality epitaxial thin films form is of increasing interest. Here, we summarize the progress made thus far in epitaxial growth and property evaluation of MAX phase thin films grown by various deposition techniques. We also address the important future research directions to be made in terms of thin-film growth. Overall, in the future, high-quality single-phase epitaxial thin film growth and engineering of chemically diverse MAX phases may open up interesting new avenues for next-generation technology.\",\"PeriodicalId\":74385,\"journal\":{\"name\":\"Oxford open materials science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open materials science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfmat/itab020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itab020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thin film growth of MAX phases as functional materials
Layered nanolaminate ternary carbides, nitrides and carbonitrides with general formula Mn+1 AXn or MAX (n = 1, 2, or 3, M is an early transition metal, A is mostly group 13 or 14 element, and X is C and/or N) has revolutionized the world of nanomaterials, due to the coexistence of both ceramic and metallic nature, giving rise to exceptional mechanical, thermal, electrical, chemical properties and wide range of applications. Although several solid-state bulk synthesis methods have been developed to produce a variety of MAX phases, however, for certain applications, the growth of MAX phases, especially in its high-quality epitaxial thin films form is of increasing interest. Here, we summarize the progress made thus far in epitaxial growth and property evaluation of MAX phase thin films grown by various deposition techniques. We also address the important future research directions to be made in terms of thin-film growth. Overall, in the future, high-quality single-phase epitaxial thin film growth and engineering of chemically diverse MAX phases may open up interesting new avenues for next-generation technology.