抛物型Lp Dirichlet边值问题和vmo型时变域

IF 1.9 1区 数学 Q1 MATHEMATICS
M. Dindoš, Luke Dyer, Sukjung Hwang
{"title":"抛物型Lp Dirichlet边值问题和vmo型时变域","authors":"M. Dindoš, Luke Dyer, Sukjung Hwang","doi":"10.2140/APDE.2020.13.1221","DOIUrl":null,"url":null,"abstract":"We prove the solvability of the parabolic $L^p$ Dirichlet boundary value problem for $1 < p \\leq \\infty$ for a PDE of the form $u_t = \\mbox{div} (A \\nabla u) + B \\cdot \\nabla u$ on time-varying domains where the coefficients $A= [a_{ij}(X, t)]$ and $B=[b_i]$ satisfy a certain natural small Carleson condition. \nThis result brings the state of affairs in the parabolic setting up to the elliptic standard. \nFurthermore, we establish that if the coefficients of the operator $A,\\,B$ satisfy a vanishing Carleson condition and the time-varying domain is of VMO type then the parabolic $L^p$ Dirichlet boundary value problem is solvable for all $1 < p \\leq \\infty$. \nThis result is related to results in papers by Mazýa, Mitrea and Shaposhnikova, and Hofmann, Mitrea and Taylor where the fact that boundary of domain has normal in VMO or near VMO implies invertibility of certain boundary operators in $L^p$ for all $1 < p \\leq \\infty$ which then (using the method of layer potentials) implies solvability of the $L^p$ boundary value problem in the same range for certain elliptic PDEs. \nOur result does not use the method of layer potentials, since the coefficients we consider are too rough to use this technique but remarkably we recover $L^p$ solvability in the full range of $p$'s as the two papers mentioned above.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/APDE.2020.13.1221","citationCount":"5","resultStr":"{\"title\":\"Parabolic Lp Dirichlet boundary value problem\\nand VMO-type time-varying domains\",\"authors\":\"M. Dindoš, Luke Dyer, Sukjung Hwang\",\"doi\":\"10.2140/APDE.2020.13.1221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the solvability of the parabolic $L^p$ Dirichlet boundary value problem for $1 < p \\\\leq \\\\infty$ for a PDE of the form $u_t = \\\\mbox{div} (A \\\\nabla u) + B \\\\cdot \\\\nabla u$ on time-varying domains where the coefficients $A= [a_{ij}(X, t)]$ and $B=[b_i]$ satisfy a certain natural small Carleson condition. \\nThis result brings the state of affairs in the parabolic setting up to the elliptic standard. \\nFurthermore, we establish that if the coefficients of the operator $A,\\\\,B$ satisfy a vanishing Carleson condition and the time-varying domain is of VMO type then the parabolic $L^p$ Dirichlet boundary value problem is solvable for all $1 < p \\\\leq \\\\infty$. \\nThis result is related to results in papers by Mazýa, Mitrea and Shaposhnikova, and Hofmann, Mitrea and Taylor where the fact that boundary of domain has normal in VMO or near VMO implies invertibility of certain boundary operators in $L^p$ for all $1 < p \\\\leq \\\\infty$ which then (using the method of layer potentials) implies solvability of the $L^p$ boundary value problem in the same range for certain elliptic PDEs. \\nOur result does not use the method of layer potentials, since the coefficients we consider are too rough to use this technique but remarkably we recover $L^p$ solvability in the full range of $p$'s as the two papers mentioned above.\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/APDE.2020.13.1221\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/APDE.2020.13.1221\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/APDE.2020.13.1221","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了形式为$u_t=\mbox{div}(a\nabla u)+B\cdot\nabla u$的PDE在时变域上$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Parabolic Lp Dirichlet boundary value problem and VMO-type time-varying domains
We prove the solvability of the parabolic $L^p$ Dirichlet boundary value problem for $1 < p \leq \infty$ for a PDE of the form $u_t = \mbox{div} (A \nabla u) + B \cdot \nabla u$ on time-varying domains where the coefficients $A= [a_{ij}(X, t)]$ and $B=[b_i]$ satisfy a certain natural small Carleson condition. This result brings the state of affairs in the parabolic setting up to the elliptic standard. Furthermore, we establish that if the coefficients of the operator $A,\,B$ satisfy a vanishing Carleson condition and the time-varying domain is of VMO type then the parabolic $L^p$ Dirichlet boundary value problem is solvable for all $1 < p \leq \infty$. This result is related to results in papers by Mazýa, Mitrea and Shaposhnikova, and Hofmann, Mitrea and Taylor where the fact that boundary of domain has normal in VMO or near VMO implies invertibility of certain boundary operators in $L^p$ for all $1 < p \leq \infty$ which then (using the method of layer potentials) implies solvability of the $L^p$ boundary value problem in the same range for certain elliptic PDEs. Our result does not use the method of layer potentials, since the coefficients we consider are too rough to use this technique but remarkably we recover $L^p$ solvability in the full range of $p$'s as the two papers mentioned above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信