多相流固耦合的高性能开源解决方案

IF 0.9 4区 工程技术 Q4 ENGINEERING, CIVIL
Wendi Liu, S. Longshaw, A. Skillen, D. Emerson, C. Valente, F. Gambioli
{"title":"多相流固耦合的高性能开源解决方案","authors":"Wendi Liu, S. Longshaw, A. Skillen, D. Emerson, C. Valente, F. Gambioli","doi":"10.17736/ijope.2022.jc844","DOIUrl":null,"url":null,"abstract":"A multiphase FSI framework using only open-source software has been developed, utilising components able to run on high-performance computing platforms. A partitioned approach is employed, ensuring a separation of concerns (fluid, structure and coupling), allowing design flexibility and robustness while reducing future maintenance efforts. Multiphase FSI test cases have been simulated and compared with published results and show good agreement. Simulation of a model representing an elastic aircraft wing with a fluid (fuel) sloshing inside is presented. This demonstrates the ability of this multiphase FSI framework in simulating complex and challenging cases involving a free liquid surface.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A High-performance Open-source Solution for Multiphase Fluid-Structure Interaction\",\"authors\":\"Wendi Liu, S. Longshaw, A. Skillen, D. Emerson, C. Valente, F. Gambioli\",\"doi\":\"10.17736/ijope.2022.jc844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiphase FSI framework using only open-source software has been developed, utilising components able to run on high-performance computing platforms. A partitioned approach is employed, ensuring a separation of concerns (fluid, structure and coupling), allowing design flexibility and robustness while reducing future maintenance efforts. Multiphase FSI test cases have been simulated and compared with published results and show good agreement. Simulation of a model representing an elastic aircraft wing with a fluid (fuel) sloshing inside is presented. This demonstrates the ability of this multiphase FSI framework in simulating complex and challenging cases involving a free liquid surface.\",\"PeriodicalId\":50302,\"journal\":{\"name\":\"International Journal of Offshore and Polar Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Offshore and Polar Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17736/ijope.2022.jc844\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2022.jc844","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4

摘要

一个只使用开源软件的多相FSI框架已经被开发出来,它利用了能够在高性能计算平台上运行的组件。采用分区方法,确保关注点(流体、结构和耦合)的分离,允许设计的灵活性和健壮性,同时减少未来的维护工作。对多阶段FSI测试用例进行了仿真,并与已发表的结果进行了比较,结果吻合良好。对飞机机翼内部存在液体(燃料)晃动的弹性模型进行了仿真。这证明了多相FSI框架在模拟涉及自由液体表面的复杂和具有挑战性的情况方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High-performance Open-source Solution for Multiphase Fluid-Structure Interaction
A multiphase FSI framework using only open-source software has been developed, utilising components able to run on high-performance computing platforms. A partitioned approach is employed, ensuring a separation of concerns (fluid, structure and coupling), allowing design flexibility and robustness while reducing future maintenance efforts. Multiphase FSI test cases have been simulated and compared with published results and show good agreement. Simulation of a model representing an elastic aircraft wing with a fluid (fuel) sloshing inside is presented. This demonstrates the ability of this multiphase FSI framework in simulating complex and challenging cases involving a free liquid surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Offshore and Polar Engineering
International Journal of Offshore and Polar Engineering ENGINEERING, CIVIL-ENGINEERING, OCEAN
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world. Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信