RuiQing Xu, Ri-Gui Zhou, YaoChong Li, SheXiang Jiang, Hou Ian
{"title":"利用马尔可夫记忆增强噪声量子隐形传态的鲁棒性","authors":"RuiQing Xu, Ri-Gui Zhou, YaoChong Li, SheXiang Jiang, Hou Ian","doi":"10.1140/epjqt/s40507-022-00122-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum teleportation is the fundamental communication unit in quantum communication. Here, a three-level system is selected for storing and transmitting quantum information, due to its unique advantages, such as lower cost than a higher-level system and higher capacity and security than a two-level system. It is known that the key procedure for perfect teleportation is the distribution of entanglement through quantum channel. However, amounts of noise existing in the quantum channel may interfere the entangled state, causing the degradation of quantum entanglement. In the physical implementations of quantum communication schemes, noise acting on the carriers of successive transmissions often exhibits some correlations, which is the so called quantum memory channel. In this paper, a memory channel model during the entanglement distribution phase is constructed and the uniform expression of the evolution of a two-qutrit entangled state under different kinds of correlated noise is derived. Finally, Pauli noise and amplitude damping noise as the typical noise source are considered to analyze the influence of memory effects of noise on qutrit teleportation. It is expected to show that three-level teleportation under these two types of channels can generally enhance the robustness to noise if the Markovian correlations of quantum channel are taken into consideration.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"9 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-022-00122-5","citationCount":"8","resultStr":"{\"title\":\"Enhancing robustness of noisy qutrit teleportation with Markovian memory\",\"authors\":\"RuiQing Xu, Ri-Gui Zhou, YaoChong Li, SheXiang Jiang, Hou Ian\",\"doi\":\"10.1140/epjqt/s40507-022-00122-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum teleportation is the fundamental communication unit in quantum communication. Here, a three-level system is selected for storing and transmitting quantum information, due to its unique advantages, such as lower cost than a higher-level system and higher capacity and security than a two-level system. It is known that the key procedure for perfect teleportation is the distribution of entanglement through quantum channel. However, amounts of noise existing in the quantum channel may interfere the entangled state, causing the degradation of quantum entanglement. In the physical implementations of quantum communication schemes, noise acting on the carriers of successive transmissions often exhibits some correlations, which is the so called quantum memory channel. In this paper, a memory channel model during the entanglement distribution phase is constructed and the uniform expression of the evolution of a two-qutrit entangled state under different kinds of correlated noise is derived. Finally, Pauli noise and amplitude damping noise as the typical noise source are considered to analyze the influence of memory effects of noise on qutrit teleportation. It is expected to show that three-level teleportation under these two types of channels can generally enhance the robustness to noise if the Markovian correlations of quantum channel are taken into consideration.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-022-00122-5\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-022-00122-5\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-022-00122-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Enhancing robustness of noisy qutrit teleportation with Markovian memory
Quantum teleportation is the fundamental communication unit in quantum communication. Here, a three-level system is selected for storing and transmitting quantum information, due to its unique advantages, such as lower cost than a higher-level system and higher capacity and security than a two-level system. It is known that the key procedure for perfect teleportation is the distribution of entanglement through quantum channel. However, amounts of noise existing in the quantum channel may interfere the entangled state, causing the degradation of quantum entanglement. In the physical implementations of quantum communication schemes, noise acting on the carriers of successive transmissions often exhibits some correlations, which is the so called quantum memory channel. In this paper, a memory channel model during the entanglement distribution phase is constructed and the uniform expression of the evolution of a two-qutrit entangled state under different kinds of correlated noise is derived. Finally, Pauli noise and amplitude damping noise as the typical noise source are considered to analyze the influence of memory effects of noise on qutrit teleportation. It is expected to show that three-level teleportation under these two types of channels can generally enhance the robustness to noise if the Markovian correlations of quantum channel are taken into consideration.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.