Mohammad Kazemi Garajeh, T. Blaschke, Vahid Hossein Haghi, Qihao Weng, Khalil Valizadeh Kamran, Zhenlong Li
{"title":"基于深度学习卷积神经网络的Sentinel-2与Landsat 8 OLI卫星影像土壤盐分分布图比较","authors":"Mohammad Kazemi Garajeh, T. Blaschke, Vahid Hossein Haghi, Qihao Weng, Khalil Valizadeh Kamran, Zhenlong Li","doi":"10.1080/07038992.2022.2056435","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we aim to compare the suitability of Sentinel-2 and Landsat 8 OLI images for detecting and mapping soil salinity distribution (SSD) using a deep learning convolutional neural network (DL-CNN) approach. We first identified and selected six SSD predisposing variables to train the models. These variables are the normalized difference vegetation index (NDVI), land use, soil types, geomorphology, land surface temperature, and evaporation rate. Next, we collected 219 ground control points from the top 20 cm of the soil surface and randomly divided them into training (70%) and validation (30%) datasets. We then evaluated the different activation, loss/cost, and optimization functions and, finally, employed ReLu, Cross-Entropy, and Adam as the most effective activation function, loss/cost function, and optimizer, respectively. The results showed that the Sentinel-2 image (94.78% overall accuracy and a Kappa of 93.14%) is more suitable for detecting and mapping SSD than the Landsat 8 OLI image (91.45% overall accuracy and a Kappa of 90.45%). Our findings also demonstrated that the DL-CNN approach can support fast and reliable image analysis and classification. As such, this research is a promising step toward understanding, controlling, and managing the complex mechanisms of soil salinization.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"452 - 468"},"PeriodicalIF":2.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Comparison between Sentinel-2 and Landsat 8 OLI Satellite Images for Soil Salinity Distribution Mapping Using a Deep Learning Convolutional Neural Network\",\"authors\":\"Mohammad Kazemi Garajeh, T. Blaschke, Vahid Hossein Haghi, Qihao Weng, Khalil Valizadeh Kamran, Zhenlong Li\",\"doi\":\"10.1080/07038992.2022.2056435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we aim to compare the suitability of Sentinel-2 and Landsat 8 OLI images for detecting and mapping soil salinity distribution (SSD) using a deep learning convolutional neural network (DL-CNN) approach. We first identified and selected six SSD predisposing variables to train the models. These variables are the normalized difference vegetation index (NDVI), land use, soil types, geomorphology, land surface temperature, and evaporation rate. Next, we collected 219 ground control points from the top 20 cm of the soil surface and randomly divided them into training (70%) and validation (30%) datasets. We then evaluated the different activation, loss/cost, and optimization functions and, finally, employed ReLu, Cross-Entropy, and Adam as the most effective activation function, loss/cost function, and optimizer, respectively. The results showed that the Sentinel-2 image (94.78% overall accuracy and a Kappa of 93.14%) is more suitable for detecting and mapping SSD than the Landsat 8 OLI image (91.45% overall accuracy and a Kappa of 90.45%). Our findings also demonstrated that the DL-CNN approach can support fast and reliable image analysis and classification. As such, this research is a promising step toward understanding, controlling, and managing the complex mechanisms of soil salinization.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"48 1\",\"pages\":\"452 - 468\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2022.2056435\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2056435","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
A Comparison between Sentinel-2 and Landsat 8 OLI Satellite Images for Soil Salinity Distribution Mapping Using a Deep Learning Convolutional Neural Network
Abstract In this paper, we aim to compare the suitability of Sentinel-2 and Landsat 8 OLI images for detecting and mapping soil salinity distribution (SSD) using a deep learning convolutional neural network (DL-CNN) approach. We first identified and selected six SSD predisposing variables to train the models. These variables are the normalized difference vegetation index (NDVI), land use, soil types, geomorphology, land surface temperature, and evaporation rate. Next, we collected 219 ground control points from the top 20 cm of the soil surface and randomly divided them into training (70%) and validation (30%) datasets. We then evaluated the different activation, loss/cost, and optimization functions and, finally, employed ReLu, Cross-Entropy, and Adam as the most effective activation function, loss/cost function, and optimizer, respectively. The results showed that the Sentinel-2 image (94.78% overall accuracy and a Kappa of 93.14%) is more suitable for detecting and mapping SSD than the Landsat 8 OLI image (91.45% overall accuracy and a Kappa of 90.45%). Our findings also demonstrated that the DL-CNN approach can support fast and reliable image analysis and classification. As such, this research is a promising step toward understanding, controlling, and managing the complex mechanisms of soil salinization.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.