{"title":"有界度CCG的可牵引解析","authors":"Lena Katharina Schiffer, Marco Kuhlmann, G. Satta","doi":"10.1162/coli_a_00441","DOIUrl":null,"url":null,"abstract":"Abstract Unlike other mildly context-sensitive formalisms, Combinatory Categorial Grammar (CCG) cannot be parsed in polynomial time when the size of the grammar is taken into account. Refining this result, we show that the parsing complexity of CCG is exponential only in the maximum degree of composition. When that degree is fixed, parsing can be carried out in polynomial time. Our finding is interesting from a linguistic perspective because a bounded degree of composition has been suggested as a universal constraint on natural language grammar. Moreover, ours is the first complexity result for a version of CCG that includes substitution rules, which are used in practical grammars but have been ignored in theoretical work.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"48 1","pages":"593-633"},"PeriodicalIF":3.7000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tractable Parsing for CCGs of Bounded Degree\",\"authors\":\"Lena Katharina Schiffer, Marco Kuhlmann, G. Satta\",\"doi\":\"10.1162/coli_a_00441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Unlike other mildly context-sensitive formalisms, Combinatory Categorial Grammar (CCG) cannot be parsed in polynomial time when the size of the grammar is taken into account. Refining this result, we show that the parsing complexity of CCG is exponential only in the maximum degree of composition. When that degree is fixed, parsing can be carried out in polynomial time. Our finding is interesting from a linguistic perspective because a bounded degree of composition has been suggested as a universal constraint on natural language grammar. Moreover, ours is the first complexity result for a version of CCG that includes substitution rules, which are used in practical grammars but have been ignored in theoretical work.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"48 1\",\"pages\":\"593-633\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00441\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00441","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Abstract Unlike other mildly context-sensitive formalisms, Combinatory Categorial Grammar (CCG) cannot be parsed in polynomial time when the size of the grammar is taken into account. Refining this result, we show that the parsing complexity of CCG is exponential only in the maximum degree of composition. When that degree is fixed, parsing can be carried out in polynomial time. Our finding is interesting from a linguistic perspective because a bounded degree of composition has been suggested as a universal constraint on natural language grammar. Moreover, ours is the first complexity result for a version of CCG that includes substitution rules, which are used in practical grammars but have been ignored in theoretical work.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.