Fernando Cardoso Durier da Silva, Ana Cristina Bicharra Garcia, Sean Wolfgand Matsui Siqueira
{"title":"情感梯度-改进熵增加的情感分析","authors":"Fernando Cardoso Durier da Silva, Ana Cristina Bicharra Garcia, Sean Wolfgand Matsui Siqueira","doi":"10.4114/intartif.vol26iss71pp114-130","DOIUrl":null,"url":null,"abstract":"Information sharing on the Web has also led to the rise and spread of fake news. Considering that fake information is generally written to trigger stronger feelings from the readers than simple facts, sentiment analysis has been widely used to detect fake news. Nevertheless, sarcasm, irony, and even jokes use similarwritten styles, making the distinction between fake and fact harder to catch automatically. We propose a new fake news Classifier that considers a set of language attributes and the gradient of sentiments contained in a message. Sentiment analysis approaches are based on labelling news with a unique value that shrinks the entire message to a single feeling. We take a broader view of a message’s sentiment representation, trying to unravel the gradient of sentiments a message may bring. We tested our approach using two datasets containing texts written in Portuguese: a public one and another we created with more up-to-date news scrapped from the Internet. Although we believe our approach is general, we tested for the Portuguese language. Our results show that the sentiment gradient positively impacts the fake news classification performance with statistical significance. The F-Measure reached 94 %, with our approach surpassing available ones (with a p-value less than 0.05 for our results).","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Gradient - Improving Sentiment Analysis with Entropy Increase\",\"authors\":\"Fernando Cardoso Durier da Silva, Ana Cristina Bicharra Garcia, Sean Wolfgand Matsui Siqueira\",\"doi\":\"10.4114/intartif.vol26iss71pp114-130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information sharing on the Web has also led to the rise and spread of fake news. Considering that fake information is generally written to trigger stronger feelings from the readers than simple facts, sentiment analysis has been widely used to detect fake news. Nevertheless, sarcasm, irony, and even jokes use similarwritten styles, making the distinction between fake and fact harder to catch automatically. We propose a new fake news Classifier that considers a set of language attributes and the gradient of sentiments contained in a message. Sentiment analysis approaches are based on labelling news with a unique value that shrinks the entire message to a single feeling. We take a broader view of a message’s sentiment representation, trying to unravel the gradient of sentiments a message may bring. We tested our approach using two datasets containing texts written in Portuguese: a public one and another we created with more up-to-date news scrapped from the Internet. Although we believe our approach is general, we tested for the Portuguese language. Our results show that the sentiment gradient positively impacts the fake news classification performance with statistical significance. The F-Measure reached 94 %, with our approach surpassing available ones (with a p-value less than 0.05 for our results).\",\"PeriodicalId\":43470,\"journal\":{\"name\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol26iss71pp114-130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol26iss71pp114-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Sentiment Gradient - Improving Sentiment Analysis with Entropy Increase
Information sharing on the Web has also led to the rise and spread of fake news. Considering that fake information is generally written to trigger stronger feelings from the readers than simple facts, sentiment analysis has been widely used to detect fake news. Nevertheless, sarcasm, irony, and even jokes use similarwritten styles, making the distinction between fake and fact harder to catch automatically. We propose a new fake news Classifier that considers a set of language attributes and the gradient of sentiments contained in a message. Sentiment analysis approaches are based on labelling news with a unique value that shrinks the entire message to a single feeling. We take a broader view of a message’s sentiment representation, trying to unravel the gradient of sentiments a message may bring. We tested our approach using two datasets containing texts written in Portuguese: a public one and another we created with more up-to-date news scrapped from the Internet. Although we believe our approach is general, we tested for the Portuguese language. Our results show that the sentiment gradient positively impacts the fake news classification performance with statistical significance. The F-Measure reached 94 %, with our approach surpassing available ones (with a p-value less than 0.05 for our results).
期刊介绍:
Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.