扰动扩散跃迁密度的L1和L∞稳定性

IF 0.3 Q4 STATISTICS & PROBABILITY
I. Bitter, V. Konakov
{"title":"扰动扩散跃迁密度的L1和L∞稳定性","authors":"I. Bitter, V. Konakov","doi":"10.1515/rose-2021-2067","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we derive a stability result for L 1 {L_{1}} and L ∞ {L_{\\infty}} perturbations of diffusions under weak regularity conditions on the coefficients. In particular, the drift terms we consider can be unbounded with at most linear growth, and the estimates reflect the transport of the initial condition by the unbounded drift through the corresponding flow. Our approach is based on the study of the distance in L 1 {L_{1}} - L 1 {L_{1}} metric between the transition densities of a given diffusion and the perturbed one using the McKean–Singer parametrix expansion. In the second part, we generalize the well-known result on the stability of diffusions with bounded coefficients to the case of at most linearly growing drift.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"29 1","pages":"287 - 308"},"PeriodicalIF":0.3000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"L 1 and L ∞ stability of transition densities of perturbed diffusions\",\"authors\":\"I. Bitter, V. Konakov\",\"doi\":\"10.1515/rose-2021-2067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we derive a stability result for L 1 {L_{1}} and L ∞ {L_{\\\\infty}} perturbations of diffusions under weak regularity conditions on the coefficients. In particular, the drift terms we consider can be unbounded with at most linear growth, and the estimates reflect the transport of the initial condition by the unbounded drift through the corresponding flow. Our approach is based on the study of the distance in L 1 {L_{1}} - L 1 {L_{1}} metric between the transition densities of a given diffusion and the perturbed one using the McKean–Singer parametrix expansion. In the second part, we generalize the well-known result on the stability of diffusions with bounded coefficients to the case of at most linearly growing drift.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"29 1\",\"pages\":\"287 - 308\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2021-2067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2021-2067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文给出了扩散的L1{L_{1}}和L∞{L_{{infty}扰动在弱正则性条件下的稳定性结果。特别是,我们考虑的漂移项最多可以是线性增长的无界漂移项,并且估计反映了无界漂移通过相应流对初始条件的传输。我们的方法是基于使用McKean–Singer参数展开来研究给定扩散的跃迁密度和扰动扩散的跃迁浓度之间在L1{L_{1}}-L1{L_{1}}度量中的距离。在第二部分中,我们将关于有界系数扩散稳定性的众所周知的结果推广到漂移至多线性增长的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L 1 and L ∞ stability of transition densities of perturbed diffusions
Abstract In this paper, we derive a stability result for L 1 {L_{1}} and L ∞ {L_{\infty}} perturbations of diffusions under weak regularity conditions on the coefficients. In particular, the drift terms we consider can be unbounded with at most linear growth, and the estimates reflect the transport of the initial condition by the unbounded drift through the corresponding flow. Our approach is based on the study of the distance in L 1 {L_{1}} - L 1 {L_{1}} metric between the transition densities of a given diffusion and the perturbed one using the McKean–Singer parametrix expansion. In the second part, we generalize the well-known result on the stability of diffusions with bounded coefficients to the case of at most linearly growing drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信