A. Boggero, L. Kamburska, S. Zaupa, M. Ciampittiello, D. Paganelli, M. Cifoni, M. Rogora, T. Di Lorenzo
{"title":"研究水位管理对深温带和大型温带湖泊沿岸无脊椎动物影响的采样和实验室协议","authors":"A. Boggero, L. Kamburska, S. Zaupa, M. Ciampittiello, D. Paganelli, M. Cifoni, M. Rogora, T. Di Lorenzo","doi":"10.4081/jlimnol.2022.2073","DOIUrl":null,"url":null,"abstract":"An integrated multidisciplinary protocol on monitoring, sampling, and laboratory procedures was developed and proposed as part of the Project \"Parks Verbano Ticino\" in the framework of the INTERREG V-A Italy-Switzerland 2014-2020 Cooperation Program. The project's overall goal is to evaluate the effects of water-level management (hydro-morphological stress) on both macro- and meio-fauna along the shores of Lake Maggiore, a large and deep temperate lake in northwest Italy. Because of their importance in the aquatic food web, determining how this stress affects macro- and meio-faunal assemblages is difficult. The protocol developed thus includes the evaluation of hydro-morphological impacts via the Lake Habitat Survey method, which entails monitoring of human-induced impacts and related infrastructures, followed by an in-depth evaluation of the ecological health of lake habitats via chemical analyses. The protocol then describes the sampling methods for shallow lake waters (i.e., <1.5 m depths) of deep lakes, but it also provides guidance on the best time to sample, how to select sampling sites, and how to allocate sample replicates along transects. A detailed step-by-step laboratory procedure for sample treatment was provided in order to assess the structure of macro- and meio-fauna assemblages, as well as morpho-functional traits (e.g., body shape and size, biomass estimate) in response to water-level management. For the first time, a set of morphological and functional characteristics of macro- and meio-faunal taxa are proposed for comparison. The protocol for standardized trait measurement is intended to be widely used. We also proposed chironomid species-specific length-mass regression models for biomass estimation, which is important for determining growth rate and secondary production of these taxa in temperate zone lakes. Length-mass equations could shed light on the role of specific species in the flow of energy through aquatic ecosystems. The proposed protocol was evaluated by team members to ensure common utility, accuracy, and repeatability of the procedures in order for researchers and stakeholders involved in water management of lakes with similar physical characteristics to use it. The protocol, which has been adapted or simply developed to meet the needs of the Italian context, could be successfully applied to other Alpine and Mediterranean temperate, deep lakes, reservoirs, and other glacial, volcanic, and morainic lakes, as well as to a broader European context.\nGraphical Abstract\n","PeriodicalId":50164,"journal":{"name":"Journal of Limnology","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sampling and laboratory protocols to study the effects of water-level management on the littoral invertebrate fauna in deep and large temperate lakes\",\"authors\":\"A. Boggero, L. Kamburska, S. Zaupa, M. Ciampittiello, D. Paganelli, M. Cifoni, M. Rogora, T. Di Lorenzo\",\"doi\":\"10.4081/jlimnol.2022.2073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated multidisciplinary protocol on monitoring, sampling, and laboratory procedures was developed and proposed as part of the Project \\\"Parks Verbano Ticino\\\" in the framework of the INTERREG V-A Italy-Switzerland 2014-2020 Cooperation Program. The project's overall goal is to evaluate the effects of water-level management (hydro-morphological stress) on both macro- and meio-fauna along the shores of Lake Maggiore, a large and deep temperate lake in northwest Italy. Because of their importance in the aquatic food web, determining how this stress affects macro- and meio-faunal assemblages is difficult. The protocol developed thus includes the evaluation of hydro-morphological impacts via the Lake Habitat Survey method, which entails monitoring of human-induced impacts and related infrastructures, followed by an in-depth evaluation of the ecological health of lake habitats via chemical analyses. The protocol then describes the sampling methods for shallow lake waters (i.e., <1.5 m depths) of deep lakes, but it also provides guidance on the best time to sample, how to select sampling sites, and how to allocate sample replicates along transects. A detailed step-by-step laboratory procedure for sample treatment was provided in order to assess the structure of macro- and meio-fauna assemblages, as well as morpho-functional traits (e.g., body shape and size, biomass estimate) in response to water-level management. For the first time, a set of morphological and functional characteristics of macro- and meio-faunal taxa are proposed for comparison. The protocol for standardized trait measurement is intended to be widely used. We also proposed chironomid species-specific length-mass regression models for biomass estimation, which is important for determining growth rate and secondary production of these taxa in temperate zone lakes. Length-mass equations could shed light on the role of specific species in the flow of energy through aquatic ecosystems. The proposed protocol was evaluated by team members to ensure common utility, accuracy, and repeatability of the procedures in order for researchers and stakeholders involved in water management of lakes with similar physical characteristics to use it. The protocol, which has been adapted or simply developed to meet the needs of the Italian context, could be successfully applied to other Alpine and Mediterranean temperate, deep lakes, reservoirs, and other glacial, volcanic, and morainic lakes, as well as to a broader European context.\\nGraphical Abstract\\n\",\"PeriodicalId\":50164,\"journal\":{\"name\":\"Journal of Limnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Limnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4081/jlimnol.2022.2073\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Limnology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4081/jlimnol.2022.2073","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Sampling and laboratory protocols to study the effects of water-level management on the littoral invertebrate fauna in deep and large temperate lakes
An integrated multidisciplinary protocol on monitoring, sampling, and laboratory procedures was developed and proposed as part of the Project "Parks Verbano Ticino" in the framework of the INTERREG V-A Italy-Switzerland 2014-2020 Cooperation Program. The project's overall goal is to evaluate the effects of water-level management (hydro-morphological stress) on both macro- and meio-fauna along the shores of Lake Maggiore, a large and deep temperate lake in northwest Italy. Because of their importance in the aquatic food web, determining how this stress affects macro- and meio-faunal assemblages is difficult. The protocol developed thus includes the evaluation of hydro-morphological impacts via the Lake Habitat Survey method, which entails monitoring of human-induced impacts and related infrastructures, followed by an in-depth evaluation of the ecological health of lake habitats via chemical analyses. The protocol then describes the sampling methods for shallow lake waters (i.e., <1.5 m depths) of deep lakes, but it also provides guidance on the best time to sample, how to select sampling sites, and how to allocate sample replicates along transects. A detailed step-by-step laboratory procedure for sample treatment was provided in order to assess the structure of macro- and meio-fauna assemblages, as well as morpho-functional traits (e.g., body shape and size, biomass estimate) in response to water-level management. For the first time, a set of morphological and functional characteristics of macro- and meio-faunal taxa are proposed for comparison. The protocol for standardized trait measurement is intended to be widely used. We also proposed chironomid species-specific length-mass regression models for biomass estimation, which is important for determining growth rate and secondary production of these taxa in temperate zone lakes. Length-mass equations could shed light on the role of specific species in the flow of energy through aquatic ecosystems. The proposed protocol was evaluated by team members to ensure common utility, accuracy, and repeatability of the procedures in order for researchers and stakeholders involved in water management of lakes with similar physical characteristics to use it. The protocol, which has been adapted or simply developed to meet the needs of the Italian context, could be successfully applied to other Alpine and Mediterranean temperate, deep lakes, reservoirs, and other glacial, volcanic, and morainic lakes, as well as to a broader European context.
Graphical Abstract
期刊介绍:
The Journal of Limnology publishes peer-reviewed original papers, review papers and notes about all aspects of limnology. The scope of the Journal of Limnology comprises the ecology, biology, microbiology, physics, and chemistry of freshwaters, including the impact of human activities, management and conservation. Coverage includes molecular-, organism-, community-, and ecosystem-level studies on both applied and theoretical issues. Proceedings of workshops, specialized symposia, conferences, may also be accepted for publication.