{"title":"高维的近最优中心极限定理和自举近似","authors":"V. Chernozhukov, D. Chetverikov, Yuta Koike","doi":"10.47004/wp.cem.2021.0821","DOIUrl":null,"url":null,"abstract":"In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of $n$ independent high-dimensional centered random vectors $X_1,\\dots,X_n$ over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case of bounded $X_i$'s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form $$C (B^2_n \\log^3 d/n)^{1/2} \\log n,$$ where $d$ is the dimension of the vectors and $B_n$ is a uniform envelope constant on components of $X_i$'s. This bound is sharp in terms of $d$ and $B_n$, and is nearly (up to $\\log n$) sharp in terms of the sample size $n$. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded $X_i$'s, formulated solely in terms of moments of $X_i$'s. Finally, we demonstrate that the bounds can be further improved in some special smooth and zero-skewness cases.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Nearly optimal central limit theorem and bootstrap approximations in high dimensions\",\"authors\":\"V. Chernozhukov, D. Chetverikov, Yuta Koike\",\"doi\":\"10.47004/wp.cem.2021.0821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of $n$ independent high-dimensional centered random vectors $X_1,\\\\dots,X_n$ over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case of bounded $X_i$'s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form $$C (B^2_n \\\\log^3 d/n)^{1/2} \\\\log n,$$ where $d$ is the dimension of the vectors and $B_n$ is a uniform envelope constant on components of $X_i$'s. This bound is sharp in terms of $d$ and $B_n$, and is nearly (up to $\\\\log n$) sharp in terms of the sample size $n$. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded $X_i$'s, formulated solely in terms of moments of $X_i$'s. Finally, we demonstrate that the bounds can be further improved in some special smooth and zero-skewness cases.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47004/wp.cem.2021.0821\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47004/wp.cem.2021.0821","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nearly optimal central limit theorem and bootstrap approximations in high dimensions
In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of $n$ independent high-dimensional centered random vectors $X_1,\dots,X_n$ over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case of bounded $X_i$'s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form $$C (B^2_n \log^3 d/n)^{1/2} \log n,$$ where $d$ is the dimension of the vectors and $B_n$ is a uniform envelope constant on components of $X_i$'s. This bound is sharp in terms of $d$ and $B_n$, and is nearly (up to $\log n$) sharp in terms of the sample size $n$. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded $X_i$'s, formulated solely in terms of moments of $X_i$'s. Finally, we demonstrate that the bounds can be further improved in some special smooth and zero-skewness cases.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.