虚二次数域上的一个简单四次族Thue方程

Pub Date : 2023-03-27 DOI:10.4064/aa230329-19-6
B. Earp-Lynch, Bernadette Faye, E. Goedhart, I. Vukusic, Daniel P. Wisniewski
{"title":"虚二次数域上的一个简单四次族Thue方程","authors":"B. Earp-Lynch, Bernadette Faye, E. Goedhart, I. Vukusic, Daniel P. Wisniewski","doi":"10.4064/aa230329-19-6","DOIUrl":null,"url":null,"abstract":"Let $t$ be any imaginary quadratic integer with $|t|\\geq 100$. We prove that the inequality \\[ |F_t(X,Y)| = | X^4 - t X^3 Y - 6 X^2 Y^2 + t X Y^3 + Y^4 | \\leq 1 \\] has only trivial solutions $(x,y)$ in integers of the same imaginary quadratic number field as $t$. Moreover, we prove results on the inequalities $|F_t(X,Y)| \\leq C|t|$ and $|F_t(X,Y)| \\leq |t|^{2 -\\varepsilon}$. These results follow from an approximation result that is based on the hypergeometric method. The proofs in this paper require a fair amount of computations, for which the code (in Sage) is provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a simple quartic family of Thue equations over imaginary quadratic number fields\",\"authors\":\"B. Earp-Lynch, Bernadette Faye, E. Goedhart, I. Vukusic, Daniel P. Wisniewski\",\"doi\":\"10.4064/aa230329-19-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $t$ be any imaginary quadratic integer with $|t|\\\\geq 100$. We prove that the inequality \\\\[ |F_t(X,Y)| = | X^4 - t X^3 Y - 6 X^2 Y^2 + t X Y^3 + Y^4 | \\\\leq 1 \\\\] has only trivial solutions $(x,y)$ in integers of the same imaginary quadratic number field as $t$. Moreover, we prove results on the inequalities $|F_t(X,Y)| \\\\leq C|t|$ and $|F_t(X,Y)| \\\\leq |t|^{2 -\\\\varepsilon}$. These results follow from an approximation result that is based on the hypergeometric method. The proofs in this paper require a fair amount of computations, for which the code (in Sage) is provided.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa230329-19-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa230329-19-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$t$为任意带$|t|\geq 100$的虚二次整数。证明了不等式\[ |F_t(X,Y)| = | X^4 - t X^3 Y - 6 X^2 Y^2 + t X Y^3 + Y^4 | \leq 1 \]在与$t$相同的虚二次数域的整数中只有平凡解$(x,y)$。此外,我们还证明了不等式$|F_t(X,Y)| \leq C|t|$和$|F_t(X,Y)| \leq |t|^{2 -\varepsilon}$的结果。这些结果来自基于超几何方法的近似结果。本文中的证明需要相当数量的计算,为此提供了代码(在Sage中)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a simple quartic family of Thue equations over imaginary quadratic number fields
Let $t$ be any imaginary quadratic integer with $|t|\geq 100$. We prove that the inequality \[ |F_t(X,Y)| = | X^4 - t X^3 Y - 6 X^2 Y^2 + t X Y^3 + Y^4 | \leq 1 \] has only trivial solutions $(x,y)$ in integers of the same imaginary quadratic number field as $t$. Moreover, we prove results on the inequalities $|F_t(X,Y)| \leq C|t|$ and $|F_t(X,Y)| \leq |t|^{2 -\varepsilon}$. These results follow from an approximation result that is based on the hypergeometric method. The proofs in this paper require a fair amount of computations, for which the code (in Sage) is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信