泥炭地特征光谱特征识别与遥感潜力评价——以中国为例

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Y. Pang, Y. Huang, Y. Zhou, J. Xu, Y. Wu
{"title":"泥炭地特征光谱特征识别与遥感潜力评价——以中国为例","authors":"Y. Pang, Y. Huang, Y. Zhou, J. Xu, Y. Wu","doi":"10.19189/MAP.2019.OMB.STA.1834","DOIUrl":null,"url":null,"abstract":"Sphagnum mosses are the dominant species of natural peatlands, which are important in the global carbon cycle. There is increasing interest in the use of sensors mounted on satellites or unmanned aerial vehicles in association with management of the ecological resources of peatlands, e.g. for monitoring purposes. Since Sphagnum mosses grow with many other vascular plants in the same habitat, the spectral signals of Sphagnum moss pixels in the remote sensing image are mixed, so investigation of their spectral characteristics forms a basis for remote sensing of peatlands. In this study, the spectral characteristics of Sphagnum magellanicum Brid were analysed at various levels (field and laboratory hyperspectral, laboratory plant physiology, satellite sensors) and compared with those of other plants, in order to examine the potential for developing remote sensing methods to distinguish Sphagnum . The results showed that: (1) the unique spectral characteristics of S. magellanicum that might be used to distinguish it from other plants are located in the near-infrared and shortwave infrared (NIR-SWIR; 760–2400 nm) region of the reflectance spectrum, and especially in the two water absorption bands (980 and 1150 nm); (2) the cell structure of S. magellanicum (which is the basis of its large water-holding capacity) explains the very low reflectance in the NIR-SWIR and the sensitivity of reflectance in the IR to moisture; and (3) the identification of Sphagnum from satellite remote sensing data should be based on sensors which have more infrared channels such as Sentinel-2A MSI, and on vegetation indices established in the NIR-SWIR such as MSI (moisture stress index) and NDII (normalised difference infrared index).","PeriodicalId":48721,"journal":{"name":"Mires and Peat","volume":"26 1","pages":"1-19"},"PeriodicalIF":1.5000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Identifying spectral features of characteristics of Sphagnum to assess the remote sensing potential of peatlands: A case study in China\",\"authors\":\"Y. Pang, Y. Huang, Y. Zhou, J. Xu, Y. Wu\",\"doi\":\"10.19189/MAP.2019.OMB.STA.1834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sphagnum mosses are the dominant species of natural peatlands, which are important in the global carbon cycle. There is increasing interest in the use of sensors mounted on satellites or unmanned aerial vehicles in association with management of the ecological resources of peatlands, e.g. for monitoring purposes. Since Sphagnum mosses grow with many other vascular plants in the same habitat, the spectral signals of Sphagnum moss pixels in the remote sensing image are mixed, so investigation of their spectral characteristics forms a basis for remote sensing of peatlands. In this study, the spectral characteristics of Sphagnum magellanicum Brid were analysed at various levels (field and laboratory hyperspectral, laboratory plant physiology, satellite sensors) and compared with those of other plants, in order to examine the potential for developing remote sensing methods to distinguish Sphagnum . The results showed that: (1) the unique spectral characteristics of S. magellanicum that might be used to distinguish it from other plants are located in the near-infrared and shortwave infrared (NIR-SWIR; 760–2400 nm) region of the reflectance spectrum, and especially in the two water absorption bands (980 and 1150 nm); (2) the cell structure of S. magellanicum (which is the basis of its large water-holding capacity) explains the very low reflectance in the NIR-SWIR and the sensitivity of reflectance in the IR to moisture; and (3) the identification of Sphagnum from satellite remote sensing data should be based on sensors which have more infrared channels such as Sentinel-2A MSI, and on vegetation indices established in the NIR-SWIR such as MSI (moisture stress index) and NDII (normalised difference infrared index).\",\"PeriodicalId\":48721,\"journal\":{\"name\":\"Mires and Peat\",\"volume\":\"26 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mires and Peat\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.19189/MAP.2019.OMB.STA.1834\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mires and Peat","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.19189/MAP.2019.OMB.STA.1834","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 7

摘要

泥炭藓是天然泥炭地的优势物种,在全球碳循环中占有重要地位。人们越来越感兴趣的是,将安装在卫星或无人机上的传感器用于泥炭地生态资源的管理,例如用于监测目的。由于泥炭藓与许多其他维管植物生长在同一栖息地,遥感图像中泥炭藓像素的光谱信号是混合的,因此对其光谱特征的研究构成了泥炭地遥感的基础。在本研究中,从不同水平(野外和实验室高光谱、实验室植物生理学、卫星传感器)分析了麦哲伦泥炭藓的光谱特征,并与其他植物的光谱特征进行了比较,以检验开发遥感方法来区分泥炭藓的潜力。结果表明:(1)麦哲伦藻独特的光谱特征位于反射光谱的近红外和短波红外(NIR-SWIR;760–2400 nm)区域,尤其是在980和1150 nm两个吸水带;(2) 麦哲伦藻的细胞结构(这是其大持水能力的基础)解释了近红外光谱中非常低的反射率和红外光谱中反射率对水分的敏感性;和(3)从卫星遥感数据中识别泥炭藓应基于具有更多红外通道的传感器,如Sentinel-2A MSI,以及在NIR-SWIR中建立的植被指数,如MSI(水分胁迫指数)和NDII(归一化差红外指数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying spectral features of characteristics of Sphagnum to assess the remote sensing potential of peatlands: A case study in China
Sphagnum mosses are the dominant species of natural peatlands, which are important in the global carbon cycle. There is increasing interest in the use of sensors mounted on satellites or unmanned aerial vehicles in association with management of the ecological resources of peatlands, e.g. for monitoring purposes. Since Sphagnum mosses grow with many other vascular plants in the same habitat, the spectral signals of Sphagnum moss pixels in the remote sensing image are mixed, so investigation of their spectral characteristics forms a basis for remote sensing of peatlands. In this study, the spectral characteristics of Sphagnum magellanicum Brid were analysed at various levels (field and laboratory hyperspectral, laboratory plant physiology, satellite sensors) and compared with those of other plants, in order to examine the potential for developing remote sensing methods to distinguish Sphagnum . The results showed that: (1) the unique spectral characteristics of S. magellanicum that might be used to distinguish it from other plants are located in the near-infrared and shortwave infrared (NIR-SWIR; 760–2400 nm) region of the reflectance spectrum, and especially in the two water absorption bands (980 and 1150 nm); (2) the cell structure of S. magellanicum (which is the basis of its large water-holding capacity) explains the very low reflectance in the NIR-SWIR and the sensitivity of reflectance in the IR to moisture; and (3) the identification of Sphagnum from satellite remote sensing data should be based on sensors which have more infrared channels such as Sentinel-2A MSI, and on vegetation indices established in the NIR-SWIR such as MSI (moisture stress index) and NDII (normalised difference infrared index).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mires and Peat
Mires and Peat ENVIRONMENTAL SCIENCES-
CiteScore
2.30
自引率
16.70%
发文量
0
审稿时长
33 weeks
期刊介绍: Mires and Peat is a peer-reviewed internet journal focusing specifically on mires, peatlands and peat. As a truly “free-to-users” publication (i.e. NO CHARGES to authors OR readers), it is immediately accessible to readers and potential authors worldwide. It is published jointly by the International Peatland Society (IPS) and the International Mire Conservation Group (IMCG). Mires and Peat is indexed by Thomson Reuters Web of Science (2017 Impact Factors: 1.326 [two-year] and 1.638 [five-year]), Elsevier Scopus, EBSCO Environment Complete, CABI Abstracts, CSA Proquest (including their Aquatic Science and Fisheries Abstracts ASFA, Ecology, Entomology, Animal Behavior, Aqualine and Pollution databases) and Directory of Open Access Journals (DOAJ). Mires and Peat also participates in the CABI Full Text Repository, and subscribes to the Portico E-journal Preservation Service (LTPA). Mires and Peat publishes high-quality research papers on all aspects of peatland science, technology and wise use, including: ecology, hydrology, survey, inventory, classification, functions and values of mires and peatlands; scientific, economic and human aspects of the management of peatlands for agriculture, forestry, nature conservation, environmental protection, peat extraction, industrial development and other purposes; biological, physical and chemical characteristics of peat; and climate change and peatlands. Short communications and review articles on these and related topics will also be considered; and suggestions for special issues of the Journal based on the proceedings of conferences, seminars, symposia and workshops will be welcomed. The submission of material by authors and from countries whose work would otherwise be inaccessible to the international community is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信