关于可观测性的简要概述

Q4 Mathematics
W. Santos
{"title":"关于可观测性的简要概述","authors":"W. Santos","doi":"10.15446/recolma.v53nsupl.84013","DOIUrl":null,"url":null,"abstract":"The exploration of the notion of observability exhibits transparently the rich interplay between algebraic and geometric ideas in geometric invariant theory. The concept of observable subgroup was introduced in the early 1960s with the purpose of studying extensions of representations from an afine algebraic subgroup to the whole group. The extent of its importance in representation and invariant theory in particular for Hilbert's 14th problem was noticed almost immediately. An important strenghtening appeared in the mid 1970s when the concept of strong observability was introduced and it was shown that the notion of observability can be understood as an intermediate step in the notion of reductivity (or semisimplicity), when adequately generalized. More recently starting in 2010, the concept of observable subgroup was expanded to include the concept of observable action of an afine algebraic group on an afine variety, launching a series of new applications and opening a surge of very interesting activity. In another direction around 2006, the related concept of observable adjunction was introduced, and its application to module categories over tensor categories was noticed. In the current survey, we follow (approximately) the historical development of the subject introducing along the way, the definitions and some of the main results including some of the proofs. For the unproven parts, precise references are mentioned.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84013","citationCount":"0","resultStr":"{\"title\":\"A short survey on observability\",\"authors\":\"W. Santos\",\"doi\":\"10.15446/recolma.v53nsupl.84013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of the notion of observability exhibits transparently the rich interplay between algebraic and geometric ideas in geometric invariant theory. The concept of observable subgroup was introduced in the early 1960s with the purpose of studying extensions of representations from an afine algebraic subgroup to the whole group. The extent of its importance in representation and invariant theory in particular for Hilbert's 14th problem was noticed almost immediately. An important strenghtening appeared in the mid 1970s when the concept of strong observability was introduced and it was shown that the notion of observability can be understood as an intermediate step in the notion of reductivity (or semisimplicity), when adequately generalized. More recently starting in 2010, the concept of observable subgroup was expanded to include the concept of observable action of an afine algebraic group on an afine variety, launching a series of new applications and opening a surge of very interesting activity. In another direction around 2006, the related concept of observable adjunction was introduced, and its application to module categories over tensor categories was noticed. In the current survey, we follow (approximately) the historical development of the subject introducing along the way, the definitions and some of the main results including some of the proofs. For the unproven parts, precise references are mentioned.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53nsupl.84013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53nsupl.84013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

对可观察性概念的探索清楚地展示了几何不变量理论中代数和几何思想之间的丰富相互作用。可观察子群的概念是在20世纪60年代初引入的,目的是研究表示从一个单代数子群到整个群的扩展。它在表示和不变量理论中的重要性,特别是对希尔伯特第14个问题的重要性,几乎立即被注意到。20世纪70年代中期,当引入强可观察性的概念时,出现了一个重要的强化,表明当充分广义时,可观察器的概念可以被理解为还原性(或半单性)概念的中间步骤。最近,从2010年开始,可观测子群的概念被扩展到包括一个仿射代数群对一个仿射变种的可观测作用的概念,推出了一系列新的应用程序,并开启了一系列非常有趣的活动。在2006年左右的另一个方向上,引入了可观测附加的相关概念,并注意到它在张量范畴之上的模范畴中的应用。在目前的调查中,我们大致遵循了该学科的历史发展,介绍了其定义和一些主要结果,包括一些证明。对于未经证实的零件,会提到精确的参考文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short survey on observability
The exploration of the notion of observability exhibits transparently the rich interplay between algebraic and geometric ideas in geometric invariant theory. The concept of observable subgroup was introduced in the early 1960s with the purpose of studying extensions of representations from an afine algebraic subgroup to the whole group. The extent of its importance in representation and invariant theory in particular for Hilbert's 14th problem was noticed almost immediately. An important strenghtening appeared in the mid 1970s when the concept of strong observability was introduced and it was shown that the notion of observability can be understood as an intermediate step in the notion of reductivity (or semisimplicity), when adequately generalized. More recently starting in 2010, the concept of observable subgroup was expanded to include the concept of observable action of an afine algebraic group on an afine variety, launching a series of new applications and opening a surge of very interesting activity. In another direction around 2006, the related concept of observable adjunction was introduced, and its application to module categories over tensor categories was noticed. In the current survey, we follow (approximately) the historical development of the subject introducing along the way, the definitions and some of the main results including some of the proofs. For the unproven parts, precise references are mentioned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信