负荷为Riemann-Liouville分数阶导数的热方程的边值问题

IF 0.7 Q2 MATHEMATICS
A. Pskhu, M. Kosmakova, D. M. Akhmanova, L.Zh. Kassymova, A. A. Assetov
{"title":"负荷为Riemann-Liouville分数阶导数的热方程的边值问题","authors":"A. Pskhu, M. Kosmakova, D. M. Akhmanova, L.Zh. Kassymova, A. A. Assetov","doi":"10.31489/2022m1/74-82","DOIUrl":null,"url":null,"abstract":"A boundary value problem for a fractionally loaded heat equation is considered in the first quadrant. The loaded term has the form of the Riemann-Liouville’s fractional derivative with respect to the time variable, and the order of the derivative in the loaded term is less than the order of the differential part. The study is based on reducing the boundary value problem to a Volterra integral equation. The kernel of the obtained integral equation contains a special function, namely, the Wright function. The kernel is estimated, and the conditions for the unique solvability of the integral equation are obtained.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problem for the heat equation with a load as the Riemann-Liouville fractional derivative\",\"authors\":\"A. Pskhu, M. Kosmakova, D. M. Akhmanova, L.Zh. Kassymova, A. A. Assetov\",\"doi\":\"10.31489/2022m1/74-82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A boundary value problem for a fractionally loaded heat equation is considered in the first quadrant. The loaded term has the form of the Riemann-Liouville’s fractional derivative with respect to the time variable, and the order of the derivative in the loaded term is less than the order of the differential part. The study is based on reducing the boundary value problem to a Volterra integral equation. The kernel of the obtained integral equation contains a special function, namely, the Wright function. The kernel is estimated, and the conditions for the unique solvability of the integral equation are obtained.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m1/74-82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m1/74-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在第一象限考虑了分数加载热方程的边值问题。加载项对时间变量具有黎曼-刘维尔分数阶导数的形式,加载项中导数的阶数小于微分部分的阶数。研究的基础是将边值问题化为Volterra积分方程。得到的积分方程的核包含一个特殊的函数,即莱特函数。估计了积分方程的核,得到了积分方程唯一可解的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary value problem for the heat equation with a load as the Riemann-Liouville fractional derivative
A boundary value problem for a fractionally loaded heat equation is considered in the first quadrant. The loaded term has the form of the Riemann-Liouville’s fractional derivative with respect to the time variable, and the order of the derivative in the loaded term is less than the order of the differential part. The study is based on reducing the boundary value problem to a Volterra integral equation. The kernel of the obtained integral equation contains a special function, namely, the Wright function. The kernel is estimated, and the conditions for the unique solvability of the integral equation are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信