根据自收缩器结构合成的须鲸记录光谱图:CAE、VAE和CAE-LSTM

María Celeste Cabedio, Marco Carnaghi
{"title":"根据自收缩器结构合成的须鲸记录光谱图:CAE、VAE和CAE-LSTM","authors":"María Celeste Cabedio, Marco Carnaghi","doi":"10.37537/rev.elektron.6.2.167.2022","DOIUrl":null,"url":null,"abstract":"En este trabajo se analizan diferentes arquitecturas de redes convolucionales sencillas para generar espectrogramas sintéticos correspondientes a registros de audio de ballenas barbadas. La sencillez en el modelo juega un rol importante en las implementaciones de este tipo de redes sobre sistemas embebidos. Además, existe una necesidad de generar modelos eficientes frente a la escasez de datos disponibles para  este tipo de aplicaciones. Con tal fin, se presentan arquitecturas de Autoencoders simples y de baja cantidad de parámetros asociados, se entrenan los modelos, se obtienen métricas adecuadas y se realizan las correspondientes comparaciones. Los resultados obtenidos demuestran que la arquitectura con una implementación más directa es, a su vez, la más conveniente. Finalmente, a partir de estos modelos, se generan espectrogramas sintéticos a partir de pocos datos de muestra, empleando una arquitectura de baja complejidad y asumiendo una distribución normal de los vectores reales.","PeriodicalId":34872,"journal":{"name":"Elektron","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Espectrogramas de registros de Ballenas Barbadas sintetizados a partir de arquitecturas de Autoenconders: CAE, VAE y CAE-LSTM\",\"authors\":\"María Celeste Cabedio, Marco Carnaghi\",\"doi\":\"10.37537/rev.elektron.6.2.167.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este trabajo se analizan diferentes arquitecturas de redes convolucionales sencillas para generar espectrogramas sintéticos correspondientes a registros de audio de ballenas barbadas. La sencillez en el modelo juega un rol importante en las implementaciones de este tipo de redes sobre sistemas embebidos. Además, existe una necesidad de generar modelos eficientes frente a la escasez de datos disponibles para  este tipo de aplicaciones. Con tal fin, se presentan arquitecturas de Autoencoders simples y de baja cantidad de parámetros asociados, se entrenan los modelos, se obtienen métricas adecuadas y se realizan las correspondientes comparaciones. Los resultados obtenidos demuestran que la arquitectura con una implementación más directa es, a su vez, la más conveniente. Finalmente, a partir de estos modelos, se generan espectrogramas sintéticos a partir de pocos datos de muestra, empleando una arquitectura de baja complejidad y asumiendo una distribución normal de los vectores reales.\",\"PeriodicalId\":34872,\"journal\":{\"name\":\"Elektron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37537/rev.elektron.6.2.167.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37537/rev.elektron.6.2.167.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了简单卷积网络的不同结构,以生成与须鲸音频记录相对应的合成光谱图。该模型的简单性在嵌入式系统上实现这类网络方面发挥着重要作用。此外,鉴于此类应用程序可用数据的短缺,需要生成有效的模型。为此,提出了简单且相关参数较少的自编码器结构,对模型进行了训练,获得了适当的指标,并进行了相应的比较。获得的结果表明,实现更直接的架构反过来也是最方便的。最后,根据这些模型,使用低复杂度的结构并假设实际矢量的正态分布,从很少的样本数据中生成合成光谱图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Espectrogramas de registros de Ballenas Barbadas sintetizados a partir de arquitecturas de Autoenconders: CAE, VAE y CAE-LSTM
En este trabajo se analizan diferentes arquitecturas de redes convolucionales sencillas para generar espectrogramas sintéticos correspondientes a registros de audio de ballenas barbadas. La sencillez en el modelo juega un rol importante en las implementaciones de este tipo de redes sobre sistemas embebidos. Además, existe una necesidad de generar modelos eficientes frente a la escasez de datos disponibles para  este tipo de aplicaciones. Con tal fin, se presentan arquitecturas de Autoencoders simples y de baja cantidad de parámetros asociados, se entrenan los modelos, se obtienen métricas adecuadas y se realizan las correspondientes comparaciones. Los resultados obtenidos demuestran que la arquitectura con una implementación más directa es, a su vez, la más conveniente. Finalmente, a partir de estos modelos, se generan espectrogramas sintéticos a partir de pocos datos de muestra, empleando una arquitectura de baja complejidad y asumiendo una distribución normal de los vectores reales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信