{"title":"在距离集的商集上","authors":"A. Iosevich, D. Koh, Hans Parshall","doi":"10.2140/moscow.2019.8.103","DOIUrl":null,"url":null,"abstract":"Let ${\\Bbb F}_q$ be a finite field of order $q.$ We prove that if $d\\ge 2$ is even and $E \\subset {\\Bbb F}_q^d$ with $|E| \\ge 9q^{\\frac{d}{2}}$ then $$ {\\Bbb F}_q=\\frac{\\Delta(E)}{\\Delta(E)}=\\left\\{ \\frac{a}{b}: a \\in \\Delta(E), b \\in \\Delta(E) \\backslash \\{0\\} \\right\\},$$ where $$ \\Delta(E)=\\{||x-y||: x,y \\in E\\}, \\ ||x||=x_1^2+x_2^2+\\cdots+x_d^2.$$ If the dimension $d$ is odd and $E\\subset \\mathbb F_q^d$ with $|E|\\ge 6q^{\\frac{d}{2}},$ then $$ \\{0\\}\\cup\\mathbb F_q^+ \\subset \\frac{\\Delta(E)}{\\Delta(E)},$$ where $\\mathbb F_q^+$ denotes the set of nonzero quadratic residues in $\\mathbb F_q.$ Both results are, in general, best possible, including the conclusion about the nonzero quadratic residues in odd dimensions.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.103","citationCount":"11","resultStr":"{\"title\":\"On the quotient set of the distance set\",\"authors\":\"A. Iosevich, D. Koh, Hans Parshall\",\"doi\":\"10.2140/moscow.2019.8.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ${\\\\Bbb F}_q$ be a finite field of order $q.$ We prove that if $d\\\\ge 2$ is even and $E \\\\subset {\\\\Bbb F}_q^d$ with $|E| \\\\ge 9q^{\\\\frac{d}{2}}$ then $$ {\\\\Bbb F}_q=\\\\frac{\\\\Delta(E)}{\\\\Delta(E)}=\\\\left\\\\{ \\\\frac{a}{b}: a \\\\in \\\\Delta(E), b \\\\in \\\\Delta(E) \\\\backslash \\\\{0\\\\} \\\\right\\\\},$$ where $$ \\\\Delta(E)=\\\\{||x-y||: x,y \\\\in E\\\\}, \\\\ ||x||=x_1^2+x_2^2+\\\\cdots+x_d^2.$$ If the dimension $d$ is odd and $E\\\\subset \\\\mathbb F_q^d$ with $|E|\\\\ge 6q^{\\\\frac{d}{2}},$ then $$ \\\\{0\\\\}\\\\cup\\\\mathbb F_q^+ \\\\subset \\\\frac{\\\\Delta(E)}{\\\\Delta(E)},$$ where $\\\\mathbb F_q^+$ denotes the set of nonzero quadratic residues in $\\\\mathbb F_q.$ Both results are, in general, best possible, including the conclusion about the nonzero quadratic residues in odd dimensions.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.103\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let ${\Bbb F}_q$ be a finite field of order $q.$ We prove that if $d\ge 2$ is even and $E \subset {\Bbb F}_q^d$ with $|E| \ge 9q^{\frac{d}{2}}$ then $$ {\Bbb F}_q=\frac{\Delta(E)}{\Delta(E)}=\left\{ \frac{a}{b}: a \in \Delta(E), b \in \Delta(E) \backslash \{0\} \right\},$$ where $$ \Delta(E)=\{||x-y||: x,y \in E\}, \ ||x||=x_1^2+x_2^2+\cdots+x_d^2.$$ If the dimension $d$ is odd and $E\subset \mathbb F_q^d$ with $|E|\ge 6q^{\frac{d}{2}},$ then $$ \{0\}\cup\mathbb F_q^+ \subset \frac{\Delta(E)}{\Delta(E)},$$ where $\mathbb F_q^+$ denotes the set of nonzero quadratic residues in $\mathbb F_q.$ Both results are, in general, best possible, including the conclusion about the nonzero quadratic residues in odd dimensions.