{"title":"导波在船舶结构健康监测中的可行性研究","authors":"Emil Roch, B. Zima, K. Woloszyk, Y. Garbatov","doi":"10.2478/pomr-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract Ships and offshore structures operate in a severe corrosion degradation environment and face difficulty in providing long-lasting corrosion protection. The Classification Societies recommend regular thickness measurements leading to structural component replacements, to ensure structural integrity during service life. The measurements are usually performed using ultrasonic thickness gauges and such an approach requires multiple measurements of the corroded structural components. Otherwise, the collected data are insufficient to precisely assess the corrosion degradation level. This study aims to perform numerical and experimental analyses to verify the use of guided ultrasonic waves in defining the corrosion degradation level of the corroded structural components of a ship. The study incorporates the fundamental antisymmetric Lamb mode, excited by piezoelectric transducers attached at the pre-selected points on stiffened panels, representing typical structural ship components. The specimens are exposed to accelerated marine corrosion degradation, the influence of the degree of degradation on the wave time of flight being analysed. The study indicates that guided waves are a promising approach for diagnosing corroded structural components. The signals characterised by a high signal-to-noise ratio have been captured, even for relatively long distances between the transducers. This proves that the proposed approach can be suitable for monitoring more extensive areas of ship structures by employing a single measurement.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"30 1","pages":"76 - 84"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guided Waves in Ship Structural Health Monitoring – A Feasibility Study\",\"authors\":\"Emil Roch, B. Zima, K. Woloszyk, Y. Garbatov\",\"doi\":\"10.2478/pomr-2023-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ships and offshore structures operate in a severe corrosion degradation environment and face difficulty in providing long-lasting corrosion protection. The Classification Societies recommend regular thickness measurements leading to structural component replacements, to ensure structural integrity during service life. The measurements are usually performed using ultrasonic thickness gauges and such an approach requires multiple measurements of the corroded structural components. Otherwise, the collected data are insufficient to precisely assess the corrosion degradation level. This study aims to perform numerical and experimental analyses to verify the use of guided ultrasonic waves in defining the corrosion degradation level of the corroded structural components of a ship. The study incorporates the fundamental antisymmetric Lamb mode, excited by piezoelectric transducers attached at the pre-selected points on stiffened panels, representing typical structural ship components. The specimens are exposed to accelerated marine corrosion degradation, the influence of the degree of degradation on the wave time of flight being analysed. The study indicates that guided waves are a promising approach for diagnosing corroded structural components. The signals characterised by a high signal-to-noise ratio have been captured, even for relatively long distances between the transducers. This proves that the proposed approach can be suitable for monitoring more extensive areas of ship structures by employing a single measurement.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"30 1\",\"pages\":\"76 - 84\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0023\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0023","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Guided Waves in Ship Structural Health Monitoring – A Feasibility Study
Abstract Ships and offshore structures operate in a severe corrosion degradation environment and face difficulty in providing long-lasting corrosion protection. The Classification Societies recommend regular thickness measurements leading to structural component replacements, to ensure structural integrity during service life. The measurements are usually performed using ultrasonic thickness gauges and such an approach requires multiple measurements of the corroded structural components. Otherwise, the collected data are insufficient to precisely assess the corrosion degradation level. This study aims to perform numerical and experimental analyses to verify the use of guided ultrasonic waves in defining the corrosion degradation level of the corroded structural components of a ship. The study incorporates the fundamental antisymmetric Lamb mode, excited by piezoelectric transducers attached at the pre-selected points on stiffened panels, representing typical structural ship components. The specimens are exposed to accelerated marine corrosion degradation, the influence of the degree of degradation on the wave time of flight being analysed. The study indicates that guided waves are a promising approach for diagnosing corroded structural components. The signals characterised by a high signal-to-noise ratio have been captured, even for relatively long distances between the transducers. This proves that the proposed approach can be suitable for monitoring more extensive areas of ship structures by employing a single measurement.
期刊介绍:
The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components.
All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as:
all types of vessels and their equipment,
fixed and floating offshore units and their components,
autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV).
We welcome submissions from these fields in the following technical topics:
ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc.,
structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc.,
marine equipment: ship and offshore unit power plants: overboarding equipment; etc.