升压变换器用PI + ASM组合控制器提高PEM燃料电池输出功率

IF 0.7 4区 材料科学 Q4 ELECTROCHEMISTRY
Jie Ying Gao, Yuwei Yang, Hai-qin Gu
{"title":"升压变换器用PI + ASM组合控制器提高PEM燃料电池输出功率","authors":"Jie Ying Gao, Yuwei Yang, Hai-qin Gu","doi":"10.14447/jnmes.v24i4.a05","DOIUrl":null,"url":null,"abstract":"Received: July 21-2021 Accepted: September 30-2021 Proton-exchange membrane (PEM) is one of the most common fuel cells for renewable energy generation. In this paper, the structure of DC/DC boost converter is presented to improve the energy efficiency and the combination of proportionalintegral controller with adaptive sliding mode method is designed to achieve high output power as well as constant output voltage. The proposed method has the ability to cover uncertainty effects with an unknown upper bound due to the use of adaptive technique and in addition to improving the quality of output power and voltage of the PEM, also eliminates permanent tracking error and ensures the stability of the closed loop system. The stability of the closed-loop system has been obtained using Lyapunov method and the simulation and comparison results in MATLAB environment show the optimal performance of the system under the proposed method and high efficiency compared to the existing methods.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Output Power of PEM Fuel Cell with PI + ASM Combined Controller Designed for Boost Converter\",\"authors\":\"Jie Ying Gao, Yuwei Yang, Hai-qin Gu\",\"doi\":\"10.14447/jnmes.v24i4.a05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: July 21-2021 Accepted: September 30-2021 Proton-exchange membrane (PEM) is one of the most common fuel cells for renewable energy generation. In this paper, the structure of DC/DC boost converter is presented to improve the energy efficiency and the combination of proportionalintegral controller with adaptive sliding mode method is designed to achieve high output power as well as constant output voltage. The proposed method has the ability to cover uncertainty effects with an unknown upper bound due to the use of adaptive technique and in addition to improving the quality of output power and voltage of the PEM, also eliminates permanent tracking error and ensures the stability of the closed loop system. The stability of the closed-loop system has been obtained using Lyapunov method and the simulation and comparison results in MATLAB environment show the optimal performance of the system under the proposed method and high efficiency compared to the existing methods.\",\"PeriodicalId\":16447,\"journal\":{\"name\":\"Journal of New Materials For Electrochemical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Materials For Electrochemical Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14447/jnmes.v24i4.a05\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v24i4.a05","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

接收时间:2021年7月21日至2021年9月30日接受时间:质子交换膜(PEM)是可再生能源发电中最常见的燃料电池之一。本文提出了DC/DC升压转换器的结构以提高能源效率,并设计了比例积分控制器与自适应滑模方法相结合的方法,以实现高输出功率和恒定输出电压。由于使用了自适应技术,该方法能够覆盖具有未知上限的不确定性影响,除了提高PEM的输出功率和电压质量外,还消除了永久跟踪误差,确保了闭环系统的稳定性。利用李雅普诺夫方法获得了闭环系统的稳定性,并在MATLAB环境中进行了仿真和比较,结果表明,在该方法下,系统性能最优,与现有方法相比具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Output Power of PEM Fuel Cell with PI + ASM Combined Controller Designed for Boost Converter
Received: July 21-2021 Accepted: September 30-2021 Proton-exchange membrane (PEM) is one of the most common fuel cells for renewable energy generation. In this paper, the structure of DC/DC boost converter is presented to improve the energy efficiency and the combination of proportionalintegral controller with adaptive sliding mode method is designed to achieve high output power as well as constant output voltage. The proposed method has the ability to cover uncertainty effects with an unknown upper bound due to the use of adaptive technique and in addition to improving the quality of output power and voltage of the PEM, also eliminates permanent tracking error and ensures the stability of the closed loop system. The stability of the closed-loop system has been obtained using Lyapunov method and the simulation and comparison results in MATLAB environment show the optimal performance of the system under the proposed method and high efficiency compared to the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of New Materials For Electrochemical Systems
Journal of New Materials For Electrochemical Systems ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信