维生素A作为心血管疾病的转录调节因子

R. Leigh, Bogac L. Kaynak
{"title":"维生素A作为心血管疾病的转录调节因子","authors":"R. Leigh, Bogac L. Kaynak","doi":"10.3390/HEARTS1020013","DOIUrl":null,"url":null,"abstract":"Vitamin A is a micronutrient and signaling molecule that regulates transcription, cellular differentiation, and organ homeostasis. Additionally, metabolites of Vitamin A are utilized as differentiation agents in the treatment of hematological cancers and skin disorders, necessitating further study into the effects of both nutrient deficiency and the exogenous delivery of Vitamin A and its metabolites on cardiovascular phenotypes. Though vitamin A/retinoids are well-known regulators of cardiac formation, recent evidence has emerged that supports their role as regulators of cardiac regeneration, postnatal cardiac function, and cardiovascular disease progression. We here review findings from genetic and pharmacological studies describing the regulation of both myocyte- and vascular-driven cardiac phenotypes by vitamin A signaling. We identify the relationship between retinoids and maladaptive processes during the pathological hypertrophy of the heart, with a focus on the activation of neurohormonal signaling and fetal transcription factors (Gata4, Tbx5). Finally, we assess how this information might be leveraged to develop novel therapeutic avenues.","PeriodicalId":93563,"journal":{"name":"Hearts (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/HEARTS1020013","citationCount":"2","resultStr":"{\"title\":\"Vitamin A as a Transcriptional Regulator of Cardiovascular Disease\",\"authors\":\"R. Leigh, Bogac L. Kaynak\",\"doi\":\"10.3390/HEARTS1020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vitamin A is a micronutrient and signaling molecule that regulates transcription, cellular differentiation, and organ homeostasis. Additionally, metabolites of Vitamin A are utilized as differentiation agents in the treatment of hematological cancers and skin disorders, necessitating further study into the effects of both nutrient deficiency and the exogenous delivery of Vitamin A and its metabolites on cardiovascular phenotypes. Though vitamin A/retinoids are well-known regulators of cardiac formation, recent evidence has emerged that supports their role as regulators of cardiac regeneration, postnatal cardiac function, and cardiovascular disease progression. We here review findings from genetic and pharmacological studies describing the regulation of both myocyte- and vascular-driven cardiac phenotypes by vitamin A signaling. We identify the relationship between retinoids and maladaptive processes during the pathological hypertrophy of the heart, with a focus on the activation of neurohormonal signaling and fetal transcription factors (Gata4, Tbx5). Finally, we assess how this information might be leveraged to develop novel therapeutic avenues.\",\"PeriodicalId\":93563,\"journal\":{\"name\":\"Hearts (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/HEARTS1020013\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hearts (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/HEARTS1020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearts (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/HEARTS1020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

维生素A是一种微量营养素和信号分子,调节转录、细胞分化和器官稳态。此外,维生素A的代谢物被用作治疗血液病和皮肤病的分化剂,需要进一步研究营养缺乏和维生素A及其代谢物的外源性输送对心血管表型的影响。虽然维生素A/类维生素A是众所周知的心脏形成调节剂,但最近的证据支持它们在心脏再生、出生后心脏功能和心血管疾病进展中的调节作用。我们在此回顾遗传学和药理学研究的发现,这些研究描述了维生素A信号对心肌细胞和血管驱动的心脏表型的调节。我们确定了类维生素a与病理性心脏肥大过程中的不适应过程之间的关系,重点关注神经激素信号和胎儿转录因子的激活(Gata4, Tbx5)。最后,我们评估如何利用这些信息来开发新的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vitamin A as a Transcriptional Regulator of Cardiovascular Disease
Vitamin A is a micronutrient and signaling molecule that regulates transcription, cellular differentiation, and organ homeostasis. Additionally, metabolites of Vitamin A are utilized as differentiation agents in the treatment of hematological cancers and skin disorders, necessitating further study into the effects of both nutrient deficiency and the exogenous delivery of Vitamin A and its metabolites on cardiovascular phenotypes. Though vitamin A/retinoids are well-known regulators of cardiac formation, recent evidence has emerged that supports their role as regulators of cardiac regeneration, postnatal cardiac function, and cardiovascular disease progression. We here review findings from genetic and pharmacological studies describing the regulation of both myocyte- and vascular-driven cardiac phenotypes by vitamin A signaling. We identify the relationship between retinoids and maladaptive processes during the pathological hypertrophy of the heart, with a focus on the activation of neurohormonal signaling and fetal transcription factors (Gata4, Tbx5). Finally, we assess how this information might be leveraged to develop novel therapeutic avenues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信