{"title":"非哈密顿图的整数-反幻谱","authors":"W. Shiu, R. Low","doi":"10.20429/tag.2022.090208","DOIUrl":null,"url":null,"abstract":"Let A be a nontrivial abelian group. A connected simple graph G = ( V, E ) is A antimagic if there exists an edge labeling f : E ( G ) → A \\ { 0 } such that the induced vertex labeling f + : V ( G ) → A , defined by f + ( v ) = Σ { f ( u, v ) : ( u, v ) ∈ E ( G ) } , is a one-to-one map. In this paper, we analyze the group-antimagic property for Cartesian products, hexagonal nets and theta graphs.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Integer-antimagic Spectra of Non-Hamiltonian Graphs\",\"authors\":\"W. Shiu, R. Low\",\"doi\":\"10.20429/tag.2022.090208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A be a nontrivial abelian group. A connected simple graph G = ( V, E ) is A antimagic if there exists an edge labeling f : E ( G ) → A \\\\ { 0 } such that the induced vertex labeling f + : V ( G ) → A , defined by f + ( v ) = Σ { f ( u, v ) : ( u, v ) ∈ E ( G ) } , is a one-to-one map. In this paper, we analyze the group-antimagic property for Cartesian products, hexagonal nets and theta graphs.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2022.090208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2022.090208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On the Integer-antimagic Spectra of Non-Hamiltonian Graphs
Let A be a nontrivial abelian group. A connected simple graph G = ( V, E ) is A antimagic if there exists an edge labeling f : E ( G ) → A \ { 0 } such that the induced vertex labeling f + : V ( G ) → A , defined by f + ( v ) = Σ { f ( u, v ) : ( u, v ) ∈ E ( G ) } , is a one-to-one map. In this paper, we analyze the group-antimagic property for Cartesian products, hexagonal nets and theta graphs.