对应、本质与量化模态逻辑

IF 0.6 Q2 LOGIC
T. Bigaj
{"title":"对应、本质与量化模态逻辑","authors":"T. Bigaj","doi":"10.12775/llp.2022.001","DOIUrl":null,"url":null,"abstract":"It is commonplace to formalize propositions involving essential properties of objects in a language containing modal operators and quantifiers. Assuming David Lewis’s counterpart theory as a semantic framework for quantified modal logic, I will show that certain statements discussed in the metaphysics of modality de re, such as the sufficiency condition for essential properties, cannot be faithfully formalized. A natural modification of Lewis’s translation scheme seems to be an obvious solution but is not acceptable for various reasons. Consequently, the only safe way to express some intuitions regarding essential properties is to use directly the language of counterpart theory without modal operators.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterparts, Essences and Quantified Modal Logic\",\"authors\":\"T. Bigaj\",\"doi\":\"10.12775/llp.2022.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is commonplace to formalize propositions involving essential properties of objects in a language containing modal operators and quantifiers. Assuming David Lewis’s counterpart theory as a semantic framework for quantified modal logic, I will show that certain statements discussed in the metaphysics of modality de re, such as the sufficiency condition for essential properties, cannot be faithfully formalized. A natural modification of Lewis’s translation scheme seems to be an obvious solution but is not acceptable for various reasons. Consequently, the only safe way to express some intuitions regarding essential properties is to use directly the language of counterpart theory without modal operators.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2022.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2022.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在包含模态运算符和量词的语言中,形式化涉及对象本质属性的命题是很常见的。假设David Lewis的对应理论是量化模态逻辑的语义框架,我将表明在模态概念的形而上学中讨论的某些陈述,例如本质属性的充分性条件,不能被忠实地形式化。对刘易斯的翻译方案进行自然的修改似乎是一个显而易见的解决方案,但由于各种原因,这是不可接受的。因此,表达一些关于本质性质的直觉的唯一安全方法是直接使用对应理论的语言,而不使用模态算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterparts, Essences and Quantified Modal Logic
It is commonplace to formalize propositions involving essential properties of objects in a language containing modal operators and quantifiers. Assuming David Lewis’s counterpart theory as a semantic framework for quantified modal logic, I will show that certain statements discussed in the metaphysics of modality de re, such as the sufficiency condition for essential properties, cannot be faithfully formalized. A natural modification of Lewis’s translation scheme seems to be an obvious solution but is not acceptable for various reasons. Consequently, the only safe way to express some intuitions regarding essential properties is to use directly the language of counterpart theory without modal operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信