Mohamed Adel, M. Khader, Salman Algelany, Khaled Aldwoah
{"title":"一种精确模拟分数阶时滞微分方程的方法","authors":"Mohamed Adel, M. Khader, Salman Algelany, Khaled Aldwoah","doi":"10.3390/fractalfract7090671","DOIUrl":null,"url":null,"abstract":"The fractional Legendre polynomials (FLPs) that we present as an effective method for solving fractional delay differential equations (FDDEs) are used in this work. The Liouville–Caputo sense is used to characterize fractional derivatives. This method uses the spectral collocation technique based on FLPs. The proposed method converts FDDEs into a set of algebraic equations. We lay out a study of the convergence analysis and figure out the upper bound on error for the approximate solution. Examples are provided to demonstrate the precision of the suggested approach.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accurate Approach to Simulate the Fractional Delay Differential Equations\",\"authors\":\"Mohamed Adel, M. Khader, Salman Algelany, Khaled Aldwoah\",\"doi\":\"10.3390/fractalfract7090671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional Legendre polynomials (FLPs) that we present as an effective method for solving fractional delay differential equations (FDDEs) are used in this work. The Liouville–Caputo sense is used to characterize fractional derivatives. This method uses the spectral collocation technique based on FLPs. The proposed method converts FDDEs into a set of algebraic equations. We lay out a study of the convergence analysis and figure out the upper bound on error for the approximate solution. Examples are provided to demonstrate the precision of the suggested approach.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7090671\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090671","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An Accurate Approach to Simulate the Fractional Delay Differential Equations
The fractional Legendre polynomials (FLPs) that we present as an effective method for solving fractional delay differential equations (FDDEs) are used in this work. The Liouville–Caputo sense is used to characterize fractional derivatives. This method uses the spectral collocation technique based on FLPs. The proposed method converts FDDEs into a set of algebraic equations. We lay out a study of the convergence analysis and figure out the upper bound on error for the approximate solution. Examples are provided to demonstrate the precision of the suggested approach.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.