n -三次集在线性空间中的应用

IF 1 Q1 MATHEMATICS
P. Kavyasree, B. Surender Reddy
{"title":"n -三次集在线性空间中的应用","authors":"P. Kavyasree, B. Surender Reddy","doi":"10.46793/kgjmat2204.575k","DOIUrl":null,"url":null,"abstract":"The concept of N-fuzzy sets is a good mathematical tool to deal with uncertainties that use the co-domain [−1, 0] for the membership function. The notion of N-cubic sets is defined by combining interval-valued N-fuzzy sets and N-fuzzy sets. Using this N-cubic sets, we initiate a new theory called N-cubic linear spaces. Motivated by the notion of cubic linear spaces we define P-union (resp. R-union), P-intersection (resp. R-intersection) of N-cubic linear spaces. The notion of internal and external N-cubic linear spaces and their properties are investigated.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"N-Cubic Sets Applied to Linear Spaces\",\"authors\":\"P. Kavyasree, B. Surender Reddy\",\"doi\":\"10.46793/kgjmat2204.575k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of N-fuzzy sets is a good mathematical tool to deal with uncertainties that use the co-domain [−1, 0] for the membership function. The notion of N-cubic sets is defined by combining interval-valued N-fuzzy sets and N-fuzzy sets. Using this N-cubic sets, we initiate a new theory called N-cubic linear spaces. Motivated by the notion of cubic linear spaces we define P-union (resp. R-union), P-intersection (resp. R-intersection) of N-cubic linear spaces. The notion of internal and external N-cubic linear spaces and their properties are investigated.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2204.575k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2204.575k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

N-模糊集的概念是一个很好的数学工具,可以处理使用共域[-1,0]作为隶属函数的不确定性。将区间值的N-模糊集和N-模糊集相结合,定义了N-三次集的概念。利用这个N立方集合,我们提出了一个新的理论,称为N立方线性空间。受三次线性空间概念的启发,我们定义了N次线性空间的P-并集(分别为R-并集)、P-交(分别为R-交)。研究了内部和外部N三次线性空间的概念及其性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N-Cubic Sets Applied to Linear Spaces
The concept of N-fuzzy sets is a good mathematical tool to deal with uncertainties that use the co-domain [−1, 0] for the membership function. The notion of N-cubic sets is defined by combining interval-valued N-fuzzy sets and N-fuzzy sets. Using this N-cubic sets, we initiate a new theory called N-cubic linear spaces. Motivated by the notion of cubic linear spaces we define P-union (resp. R-union), P-intersection (resp. R-intersection) of N-cubic linear spaces. The notion of internal and external N-cubic linear spaces and their properties are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信