{"title":"扩展指数分布的上记录值","authors":"D. Kumar, S. Dey","doi":"10.22237/JMASM/1557149263","DOIUrl":null,"url":null,"abstract":"Some recurrence relations are established for the single and product moments of upper record values for the extended exponential distribution by Nadarajah and Haghighi (2011) as an alternative to the gamma, Weibull, and the exponentiated exponential distributions. Recurrence relations for negative moments and quotient moments of upper record values are also obtained. Using relations of single moments and product moments, means, variances, and covariances of upper record values from samples of sizes up to 10 are tabulated for various values of the shape parameter and scale parameter. A characterization of this distribution based on conditional moments of record values is presented.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Upper Record Values from Extended Exponential Distribution\",\"authors\":\"D. Kumar, S. Dey\",\"doi\":\"10.22237/JMASM/1557149263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some recurrence relations are established for the single and product moments of upper record values for the extended exponential distribution by Nadarajah and Haghighi (2011) as an alternative to the gamma, Weibull, and the exponentiated exponential distributions. Recurrence relations for negative moments and quotient moments of upper record values are also obtained. Using relations of single moments and product moments, means, variances, and covariances of upper record values from samples of sizes up to 10 are tabulated for various values of the shape parameter and scale parameter. A characterization of this distribution based on conditional moments of record values is presented.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/JMASM/1557149263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1557149263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Upper Record Values from Extended Exponential Distribution
Some recurrence relations are established for the single and product moments of upper record values for the extended exponential distribution by Nadarajah and Haghighi (2011) as an alternative to the gamma, Weibull, and the exponentiated exponential distributions. Recurrence relations for negative moments and quotient moments of upper record values are also obtained. Using relations of single moments and product moments, means, variances, and covariances of upper record values from samples of sizes up to 10 are tabulated for various values of the shape parameter and scale parameter. A characterization of this distribution based on conditional moments of record values is presented.
期刊介绍:
The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.