{"title":"Finsler测度空间上热方程亚解的唯一性","authors":"Qiaoling Xia","doi":"10.4153/s0008439523000450","DOIUrl":null,"url":null,"abstract":"Let ( M, F, m ) be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in L p ( M )( p > 1) to the heat equation on R + × M is uniquely determined by the initial data. Moreover, we give an L p (0 < p ≤ 1) Liouville type theorem for nonnegative subsolutions u to the heat equation on R × M by establishing the local L p mean value inequality for u on M with Ric N ≥ − K ( K ≥ 0).","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of subsolutions to the heat equation on Finsler measure spaces\",\"authors\":\"Qiaoling Xia\",\"doi\":\"10.4153/s0008439523000450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ( M, F, m ) be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in L p ( M )( p > 1) to the heat equation on R + × M is uniquely determined by the initial data. Moreover, we give an L p (0 < p ≤ 1) Liouville type theorem for nonnegative subsolutions u to the heat equation on R × M by establishing the local L p mean value inequality for u on M with Ric N ≥ − K ( K ≥ 0).\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000450\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000450","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uniqueness of subsolutions to the heat equation on Finsler measure spaces
Let ( M, F, m ) be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in L p ( M )( p > 1) to the heat equation on R + × M is uniquely determined by the initial data. Moreover, we give an L p (0 < p ≤ 1) Liouville type theorem for nonnegative subsolutions u to the heat equation on R × M by establishing the local L p mean value inequality for u on M with Ric N ≥ − K ( K ≥ 0).
期刊介绍:
The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year.
To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics.
Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année.
Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.