Finsler测度空间上热方程亚解的唯一性

Pub Date : 2023-06-05 DOI:10.4153/s0008439523000450
Qiaoling Xia
{"title":"Finsler测度空间上热方程亚解的唯一性","authors":"Qiaoling Xia","doi":"10.4153/s0008439523000450","DOIUrl":null,"url":null,"abstract":"Let ( M, F, m ) be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in L p ( M )( p > 1) to the heat equation on R + × M is uniquely determined by the initial data. Moreover, we give an L p (0 < p ≤ 1) Liouville type theorem for nonnegative subsolutions u to the heat equation on R × M by establishing the local L p mean value inequality for u on M with Ric N ≥ − K ( K ≥ 0).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of subsolutions to the heat equation on Finsler measure spaces\",\"authors\":\"Qiaoling Xia\",\"doi\":\"10.4153/s0008439523000450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ( M, F, m ) be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in L p ( M )( p > 1) to the heat equation on R + × M is uniquely determined by the initial data. Moreover, we give an L p (0 < p ≤ 1) Liouville type theorem for nonnegative subsolutions u to the heat equation on R × M by establishing the local L p mean value inequality for u on M with Ric N ≥ − K ( K ≥ 0).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设(M,F,M)是一个前向完全Finsler测度空间。本文证明了R+×M上热方程在Lp(M)(p>1)中的任何非负全局亚解都是由初始数据唯一确定的。此外,我们通过建立Ric N≥−K(K≥0)的M上u的局部Lp均值不等式,给出了R×M上热方程非负亚解u的Lp(0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Uniqueness of subsolutions to the heat equation on Finsler measure spaces
Let ( M, F, m ) be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in L p ( M )( p > 1) to the heat equation on R + × M is uniquely determined by the initial data. Moreover, we give an L p (0 < p ≤ 1) Liouville type theorem for nonnegative subsolutions u to the heat equation on R × M by establishing the local L p mean value inequality for u on M with Ric N ≥ − K ( K ≥ 0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信