基于级联卷积神经网络的异构无线网络异常检测算法

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qiang Wu
{"title":"基于级联卷积神经网络的异构无线网络异常检测算法","authors":"Qiang Wu","doi":"10.1142/s1469026823500232","DOIUrl":null,"url":null,"abstract":"As the popularity of wireless networks deepens, the diversity of device types and hardware environments makes network data take on heterogeneous forms while the threat of malicious attacks from outside can prevent ordinary methods from mining information from abnormal data. In view of this, the research will be devoted to the feature processing of the anomalous data itself, and the convolutional operation of the anomalous information by the convolutional neural network (CNN). This is to extract the internal information. In the first step of the cascaded CNNs, the dimensions of the anomaly data will be processed, the anomaly data will be sorted under the concept of relevance grouping, and then the sorted results will be added to the convolution and pooling. The performance test uses three datasets with different feature capacities as the attack sources, and the results show a 13.22% improvement in information mining performance compared to the standard CNN. The extended CNN step will perform feature identification for homologous or similar network threats, with feature expansion within the convolutional layer first, and then pooling to reduce the computational cost. The test results show that when the maximum value domain of linear expansion is 2, the model has the best feature recognition performance, fluctuating around 85%; The model comparison test results show that the accuracy of the extended CNN is higher than that of the standard CNN, and the model stability is better than that of the back propagation (BP) neural network. This indicates that the cascaded CNN dual module can mine for the data itself, thus ignoring the risk unknowns, and this connected CNN has some practical significance. The proposed cascaded CNN module applies advanced neural network technology to identify internal and external risk data. The research content has important reference value for the security management of IoT systems.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection Algorithm for Heterogeneous Wireless Networks Based on Cascaded Convolutional Neural Networks\",\"authors\":\"Qiang Wu\",\"doi\":\"10.1142/s1469026823500232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the popularity of wireless networks deepens, the diversity of device types and hardware environments makes network data take on heterogeneous forms while the threat of malicious attacks from outside can prevent ordinary methods from mining information from abnormal data. In view of this, the research will be devoted to the feature processing of the anomalous data itself, and the convolutional operation of the anomalous information by the convolutional neural network (CNN). This is to extract the internal information. In the first step of the cascaded CNNs, the dimensions of the anomaly data will be processed, the anomaly data will be sorted under the concept of relevance grouping, and then the sorted results will be added to the convolution and pooling. The performance test uses three datasets with different feature capacities as the attack sources, and the results show a 13.22% improvement in information mining performance compared to the standard CNN. The extended CNN step will perform feature identification for homologous or similar network threats, with feature expansion within the convolutional layer first, and then pooling to reduce the computational cost. The test results show that when the maximum value domain of linear expansion is 2, the model has the best feature recognition performance, fluctuating around 85%; The model comparison test results show that the accuracy of the extended CNN is higher than that of the standard CNN, and the model stability is better than that of the back propagation (BP) neural network. This indicates that the cascaded CNN dual module can mine for the data itself, thus ignoring the risk unknowns, and this connected CNN has some practical significance. The proposed cascaded CNN module applies advanced neural network technology to identify internal and external risk data. The research content has important reference value for the security management of IoT systems.\",\"PeriodicalId\":45994,\"journal\":{\"name\":\"International Journal of Computational Intelligence and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026823500232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026823500232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着无线网络的日益普及,设备类型和硬件环境的多样性使得网络数据呈现出异类的形态,而外部恶意攻击的威胁使得普通方法无法从异常数据中挖掘信息。鉴于此,本研究将致力于异常数据本身的特征处理,以及卷积神经网络(CNN)对异常信息的卷积运算。这是为了提取内部信息。在级联cnn的第一步中,对异常数据的维度进行处理,在关联分组的概念下对异常数据进行排序,然后将排序的结果加入卷积和池化。性能测试使用三个具有不同特征容量的数据集作为攻击源,结果表明与标准CNN相比,信息挖掘性能提高了13.22%。扩展的CNN步骤将对同源或相似的网络威胁进行特征识别,首先在卷积层内进行特征扩展,然后池化以降低计算成本。测试结果表明,当线性展开的最大值域为2时,该模型具有最佳的特征识别性能,在85%左右波动;模型对比试验结果表明,扩展后的CNN准确率高于标准CNN,模型稳定性优于BP神经网络。这说明级联CNN双模块可以对数据本身进行挖掘,从而忽略了风险未知数,这种连接的CNN具有一定的实际意义。本文提出的级联CNN模块采用先进的神经网络技术来识别内部和外部风险数据。研究内容对物联网系统的安全管理具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection Algorithm for Heterogeneous Wireless Networks Based on Cascaded Convolutional Neural Networks
As the popularity of wireless networks deepens, the diversity of device types and hardware environments makes network data take on heterogeneous forms while the threat of malicious attacks from outside can prevent ordinary methods from mining information from abnormal data. In view of this, the research will be devoted to the feature processing of the anomalous data itself, and the convolutional operation of the anomalous information by the convolutional neural network (CNN). This is to extract the internal information. In the first step of the cascaded CNNs, the dimensions of the anomaly data will be processed, the anomaly data will be sorted under the concept of relevance grouping, and then the sorted results will be added to the convolution and pooling. The performance test uses three datasets with different feature capacities as the attack sources, and the results show a 13.22% improvement in information mining performance compared to the standard CNN. The extended CNN step will perform feature identification for homologous or similar network threats, with feature expansion within the convolutional layer first, and then pooling to reduce the computational cost. The test results show that when the maximum value domain of linear expansion is 2, the model has the best feature recognition performance, fluctuating around 85%; The model comparison test results show that the accuracy of the extended CNN is higher than that of the standard CNN, and the model stability is better than that of the back propagation (BP) neural network. This indicates that the cascaded CNN dual module can mine for the data itself, thus ignoring the risk unknowns, and this connected CNN has some practical significance. The proposed cascaded CNN module applies advanced neural network technology to identify internal and external risk data. The research content has important reference value for the security management of IoT systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
25
期刊介绍: The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信