{"title":"提高文本挖掘中无监督机器学习的可重复性和可问责性:透明性在报告预处理和算法选择中的重要性","authors":"L. Valtonen, S. Mäkinen, J. Kirjavainen","doi":"10.1177/10944281221124947","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":" ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection\",\"authors\":\"L. Valtonen, S. Mäkinen, J. Kirjavainen\",\"doi\":\"10.1177/10944281221124947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281221124947\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281221124947","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection
Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.