提高文本挖掘中无监督机器学习的可重复性和可问责性:透明性在报告预处理和算法选择中的重要性

IF 8.9 2区 管理学 Q1 MANAGEMENT
L. Valtonen, S. Mäkinen, J. Kirjavainen
{"title":"提高文本挖掘中无监督机器学习的可重复性和可问责性:透明性在报告预处理和算法选择中的重要性","authors":"L. Valtonen, S. Mäkinen, J. Kirjavainen","doi":"10.1177/10944281221124947","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":" ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection\",\"authors\":\"L. Valtonen, S. Mäkinen, J. Kirjavainen\",\"doi\":\"10.1177/10944281221124947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281221124947\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281221124947","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1

摘要

机器学习(ML)能够分析用于模式发现的大型数据集。ML方法及其使用标准最近在组织研究中引起了越来越多的关注;最近的报道提高了人们对透明ML报告实践重要性的认识,特别是考虑到预处理和算法选择对分析结果的影响。然而,到目前为止,为提高机器学习研究的质量所做的努力未能考虑到无监督机器学习(UML)与更常见的有监督的机器学习(SML)分开的特殊方法要求。我们通过研究非结构化文本的常见组织研究数据集来解决这些问题,并发现预处理和UML算法选择的组合之间的可解释性和代表性权衡会危及研究的可重复性、可问责性和透明度。我们强调了解决这些问题的上下文论证的必要性,并提供了评估UML选择在研究环境中的上下文适用性的原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection
Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.20
自引率
3.20%
发文量
17
期刊介绍: Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信