{"title":"拆分米尔诺-维特动机及其在纤维束中的应用","authors":"N. Yang","doi":"10.4310/cjm.2022.v10.n4.a5","DOIUrl":null,"url":null,"abstract":". We study the Milnor-Witt motives which are a finite direct sum of Z ( q )[ p ] and Z /η ( q )[ p ]. We show that for MW-motives of this type, we can determine an MW-motivic cohomology class in terms of a motivic cohomology class and a Witt cohomology class. We define the motivic Bockstein cohomology and show that it corresponds to subgroups of Witt cohomology, if the MW-motive splits as above. As an application, we give the splitting formula of Milnor-Witt motives of Grassmannian bundles and complete flag bundles. This in particular shows that the integral cohomology of real complete flags has only 2-torsions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Split Milnor–Witt motives and its applications to fiber bundles\",\"authors\":\"N. Yang\",\"doi\":\"10.4310/cjm.2022.v10.n4.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study the Milnor-Witt motives which are a finite direct sum of Z ( q )[ p ] and Z /η ( q )[ p ]. We show that for MW-motives of this type, we can determine an MW-motivic cohomology class in terms of a motivic cohomology class and a Witt cohomology class. We define the motivic Bockstein cohomology and show that it corresponds to subgroups of Witt cohomology, if the MW-motive splits as above. As an application, we give the splitting formula of Milnor-Witt motives of Grassmannian bundles and complete flag bundles. This in particular shows that the integral cohomology of real complete flags has only 2-torsions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2022.v10.n4.a5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2022.v10.n4.a5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Split Milnor–Witt motives and its applications to fiber bundles
. We study the Milnor-Witt motives which are a finite direct sum of Z ( q )[ p ] and Z /η ( q )[ p ]. We show that for MW-motives of this type, we can determine an MW-motivic cohomology class in terms of a motivic cohomology class and a Witt cohomology class. We define the motivic Bockstein cohomology and show that it corresponds to subgroups of Witt cohomology, if the MW-motive splits as above. As an application, we give the splitting formula of Milnor-Witt motives of Grassmannian bundles and complete flag bundles. This in particular shows that the integral cohomology of real complete flags has only 2-torsions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.