拆分米尔诺-维特动机及其在纤维束中的应用

IF 1.8 2区 数学 Q1 MATHEMATICS
N. Yang
{"title":"拆分米尔诺-维特动机及其在纤维束中的应用","authors":"N. Yang","doi":"10.4310/cjm.2022.v10.n4.a5","DOIUrl":null,"url":null,"abstract":". We study the Milnor-Witt motives which are a finite direct sum of Z ( q )[ p ] and Z /η ( q )[ p ]. We show that for MW-motives of this type, we can determine an MW-motivic cohomology class in terms of a motivic cohomology class and a Witt cohomology class. We define the motivic Bockstein cohomology and show that it corresponds to subgroups of Witt cohomology, if the MW-motive splits as above. As an application, we give the splitting formula of Milnor-Witt motives of Grassmannian bundles and complete flag bundles. This in particular shows that the integral cohomology of real complete flags has only 2-torsions.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Split Milnor–Witt motives and its applications to fiber bundles\",\"authors\":\"N. Yang\",\"doi\":\"10.4310/cjm.2022.v10.n4.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study the Milnor-Witt motives which are a finite direct sum of Z ( q )[ p ] and Z /η ( q )[ p ]. We show that for MW-motives of this type, we can determine an MW-motivic cohomology class in terms of a motivic cohomology class and a Witt cohomology class. We define the motivic Bockstein cohomology and show that it corresponds to subgroups of Witt cohomology, if the MW-motive splits as above. As an application, we give the splitting formula of Milnor-Witt motives of Grassmannian bundles and complete flag bundles. This in particular shows that the integral cohomology of real complete flags has only 2-torsions.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2022.v10.n4.a5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2022.v10.n4.a5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

.我们研究了Milnor-Witt动机,它是Z(q)[p]和Z/η(q)[p]的有限直和。我们证明了对于这种类型的MW动机,我们可以根据一个动机上同调类和一个Witt上同调类别来确定一个MW动机上同同调类别。我们定义了动机Bockstein上同调,并证明它对应于Witt上同调的子群,如果MW动机如上所述分裂。作为一个应用,我们给出了Grassmannian丛和完备fleag丛的Milnor-Witt动机的分裂公式。这特别表明,实完全函数的积分上同调只有2-扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Split Milnor–Witt motives and its applications to fiber bundles
. We study the Milnor-Witt motives which are a finite direct sum of Z ( q )[ p ] and Z /η ( q )[ p ]. We show that for MW-motives of this type, we can determine an MW-motivic cohomology class in terms of a motivic cohomology class and a Witt cohomology class. We define the motivic Bockstein cohomology and show that it corresponds to subgroups of Witt cohomology, if the MW-motive splits as above. As an application, we give the splitting formula of Milnor-Witt motives of Grassmannian bundles and complete flag bundles. This in particular shows that the integral cohomology of real complete flags has only 2-torsions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信