量子贝叶斯计算

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Nick Polson, Vadim Sokolov, Jianeng Xu
{"title":"量子贝叶斯计算","authors":"Nick Polson,&nbsp;Vadim Sokolov,&nbsp;Jianeng Xu","doi":"10.1002/asmb.2807","DOIUrl":null,"url":null,"abstract":"<p>Quantum Bayesian computation is an emerging field that levers the computational gains available from quantum computers. They promise to provide an exponential speed-up in Bayesian computation. Our article adds to the literature in three ways. First, we describe how quantum von Neumann measurement provides quantum versions of popular machine learning algorithms such as Markov chain Monte Carlo and deep learning that are fundamental to Bayesian learning. Second, we describe quantum data encoding methods needed to implement quantum machine learning including the counterparts to traditional feature extraction and kernel embeddings methods. Third, we show how quantum algorithms naturally calculate Bayesian quantities of interest such as posterior distributions and marginal likelihoods. Our goal then is to show how quantum algorithms solve statistical machine learning problems. On the theoretical side, we provide quantum versions of high dimensional regression, Gaussian processes and stochastic gradient descent. On the empirical side, we apply a quantum FFT algorithm to Chicago house price data. Finally, we conclude with directions for future research.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2807","citationCount":"0","resultStr":"{\"title\":\"Quantum Bayesian computation\",\"authors\":\"Nick Polson,&nbsp;Vadim Sokolov,&nbsp;Jianeng Xu\",\"doi\":\"10.1002/asmb.2807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum Bayesian computation is an emerging field that levers the computational gains available from quantum computers. They promise to provide an exponential speed-up in Bayesian computation. Our article adds to the literature in three ways. First, we describe how quantum von Neumann measurement provides quantum versions of popular machine learning algorithms such as Markov chain Monte Carlo and deep learning that are fundamental to Bayesian learning. Second, we describe quantum data encoding methods needed to implement quantum machine learning including the counterparts to traditional feature extraction and kernel embeddings methods. Third, we show how quantum algorithms naturally calculate Bayesian quantities of interest such as posterior distributions and marginal likelihoods. Our goal then is to show how quantum algorithms solve statistical machine learning problems. On the theoretical side, we provide quantum versions of high dimensional regression, Gaussian processes and stochastic gradient descent. On the empirical side, we apply a quantum FFT algorithm to Chicago house price data. Finally, we conclude with directions for future research.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2807\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2807\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2807","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

量子贝叶斯计算是一个新兴领域,利用量子计算机的计算增益。他们承诺在贝叶斯计算中提供指数级的速度。我们的文章从三个方面补充了文献。首先,我们描述了量子冯·诺伊曼测量如何提供流行的机器学习算法的量子版本,如马尔可夫链蒙特卡罗和深度学习,这是贝叶斯学习的基础。其次,我们描述了实现量子机器学习所需的量子数据编码方法,包括传统特征提取和核嵌入方法的对应方法。第三,我们展示了量子算法如何自然地计算感兴趣的贝叶斯量,如后验分布和边际似然。我们的目标是展示量子算法如何解决统计机器学习问题。在理论方面,我们提供了高维回归、高斯过程和随机梯度下降的量子版本。在实证方面,我们将量子FFT算法应用于芝加哥房价数据。最后,对今后的研究方向进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum Bayesian computation

Quantum Bayesian computation

Quantum Bayesian computation is an emerging field that levers the computational gains available from quantum computers. They promise to provide an exponential speed-up in Bayesian computation. Our article adds to the literature in three ways. First, we describe how quantum von Neumann measurement provides quantum versions of popular machine learning algorithms such as Markov chain Monte Carlo and deep learning that are fundamental to Bayesian learning. Second, we describe quantum data encoding methods needed to implement quantum machine learning including the counterparts to traditional feature extraction and kernel embeddings methods. Third, we show how quantum algorithms naturally calculate Bayesian quantities of interest such as posterior distributions and marginal likelihoods. Our goal then is to show how quantum algorithms solve statistical machine learning problems. On the theoretical side, we provide quantum versions of high dimensional regression, Gaussian processes and stochastic gradient descent. On the empirical side, we apply a quantum FFT algorithm to Chicago house price data. Finally, we conclude with directions for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信