钟形序列

IF 0.7 3区 数学 Q2 MATHEMATICS
Mateusz Kwa'snicki, Jacek Wszola
{"title":"钟形序列","authors":"Mateusz Kwa'snicki, Jacek Wszola","doi":"10.4064/sm220923-2-2","DOIUrl":null,"url":null,"abstract":"A nonnegative real function $f$ is said to be bell-shaped if it converges to zero at $\\pm\\infty$ and the $n$th derivative of $f$ changes sign $n$ times for every $n = 0, 1, 2, \\ldots$ In a similar way, we may say that a nonnegative sequence $a_k$ is bell-shaped if it converges to zero and the $n$th iterated difference of $a_k$ changes sign $n$ times for every $n = 0, 1, 2, \\ldots$ Bell-shaped functions were recently characterised by Thomas Simon and the first author. In the present paper we provide an analogous description of bell-shaped sequences. More precisely, we identify bell-shaped sequences with convolutions of P\\'olya frequency sequences and completely monotone sequences, and we characterise the corresponding generating functions as exponentials of appropriate Pick functions.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bell-shaped sequences\",\"authors\":\"Mateusz Kwa'snicki, Jacek Wszola\",\"doi\":\"10.4064/sm220923-2-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonnegative real function $f$ is said to be bell-shaped if it converges to zero at $\\\\pm\\\\infty$ and the $n$th derivative of $f$ changes sign $n$ times for every $n = 0, 1, 2, \\\\ldots$ In a similar way, we may say that a nonnegative sequence $a_k$ is bell-shaped if it converges to zero and the $n$th iterated difference of $a_k$ changes sign $n$ times for every $n = 0, 1, 2, \\\\ldots$ Bell-shaped functions were recently characterised by Thomas Simon and the first author. In the present paper we provide an analogous description of bell-shaped sequences. More precisely, we identify bell-shaped sequences with convolutions of P\\\\'olya frequency sequences and completely monotone sequences, and we characterise the corresponding generating functions as exponentials of appropriate Pick functions.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220923-2-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220923-2-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果一个非负实函数$f$在$\pm\infty$处收敛于零,则称其为钟形函数,并且$f$的$n$阶导数在每个$n = 0, 1, 2, \ldots$处都改变符号$n$次。如果一个非负序列$a_k$收敛于零,我们可以说它是钟形的,并且每个$n = 0, 1, 2, \ldots$钟形函数的$n$次迭代差分$a_k$变化符号$n$的次数最近由Thomas Simon和第一作者描述。本文给出了钟形序列的一个类似描述。更准确地说,我们用Pólya频率序列和完全单调序列的卷积识别钟形序列,并将相应的生成函数表征为适当的Pick函数的指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bell-shaped sequences
A nonnegative real function $f$ is said to be bell-shaped if it converges to zero at $\pm\infty$ and the $n$th derivative of $f$ changes sign $n$ times for every $n = 0, 1, 2, \ldots$ In a similar way, we may say that a nonnegative sequence $a_k$ is bell-shaped if it converges to zero and the $n$th iterated difference of $a_k$ changes sign $n$ times for every $n = 0, 1, 2, \ldots$ Bell-shaped functions were recently characterised by Thomas Simon and the first author. In the present paper we provide an analogous description of bell-shaped sequences. More precisely, we identify bell-shaped sequences with convolutions of P\'olya frequency sequences and completely monotone sequences, and we characterise the corresponding generating functions as exponentials of appropriate Pick functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信